
Availability in Globally Distributed Storage Systems

Daniel Ford, François Labelle, Florentina I. Popovici, Murray Stokely, Van-Anh Truong∗,
Luiz Barroso, Carrie Grimes, and Sean Quinlan

{ford,flab,florentina,mstokely}@google.com, vatruong@ieor.columbia.edu

{luiz,cgrimes,sean}@google.com
Google, Inc.

Abstract

Highly available cloud storage is often implemented with
complex, multi-tiered distributed systems built on top
of clusters of commodity servers and disk drives. So-
phisticated management, load balancing and recovery
techniques are needed to achieve high performance and
availability amidst an abundance of failure sources that
include software, hardware, network connectivity, and
power issues. While there is a relative wealth of fail-
ure studies of individual components of storage systems,
such as disk drives, relatively little has been reported so
far on the overall availability behavior of large cloud-
based storage services.

We characterize the availability properties of cloud
storage systems based on an extensive one year study of
Google’s main storage infrastructure and present statis-
tical models that enable further insight into the impact
of multiple design choices, such as data placement and
replication strategies. With these models we compare
data availability under a variety of system parameters
given the real patterns of failures observed in our fleet.

1 Introduction

Cloud storage is often implemented by complex multi-
tiered distributed systems on clusters of thousands of
commodity servers. For example, in Google we run
Bigtable [9], on GFS [16], on local Linux file systems
that ultimately write to local hard drives. Failures in any
of these layers can cause data unavailability.

Correctly designing and optimizing these multi-
layered systems for user goals such as data availability
relies on accurate models of system behavior and perfor-
mance. In the case of distributed storage systems, this
includes quantifying the impact of failures and prioritiz-
ing hardware and software subsystem improvements in

∗Now at Dept. of Industrial Engineering and Operations Research
Columbia University

the datacenter environment.
We present models we derived from studying a year of

live operation at Google and describe how our analysis
influenced the design of our next generation distributed
storage system [22].

Our work is presented in two parts. First, we measured
and analyzed the component availability, e.g. machines,
racks, multi-racks, in tens of Google storage clusters. In
this part we:

• Compare mean time to failure for system compo-
nents at different granularities, including disks, ma-
chines and racks of machines. (Section 3)

• Classify the failure causes for storage nodes, their
characteristics and contribution to overall unavail-
ability. (Section 3)

• Apply a clustering heuristic for grouping failures
which occurs almost simultaneously and show that
a large fraction of failures happen in bursts. (Sec-
tion 4)

• Quantify how likely a failure burst is associated
with a given failure domain. We find that most large
bursts of failures are associated with rack- or multi-
rack level events. (Section 4)

Based on these results, we determined that the criti-
cal element in models of availability is their ability to
account for the frequency and magnitude of correlated
failures.

Next, we consider data availability by analyzing un-
availability at the distributed file system level, where one
file system instance is referred to as a cell. We apply two
models of multi-scale correlated failures for a variety of
replication schemes and system parameters. In this part
we:

• Demonstrate the importance of modeling correlated
failures when predicting availability, and show their

1

Anant Jain

Anant Jain

Anant Jain

Anant Jain

Anant Jain

impact under a variety of replication schemes and
placement policies. (Sections 5 and 6)

• Formulate a Markov model for data availability, that
can scale to arbitrary cell sizes, and captures the in-
teraction of failures with replication policies and re-
covery times. (Section 7)

• Introduce multi-cell replication schemes and com-
pare the availability and bandwidth trade-offs
against single-cell schemes. (Sections 7 and 8)

• Show the impact of hardware failure on our cells is
significantly smaller than the impact of effectively
tuning recovery and replication parameters. (Sec-
tion 8)

Our results show the importance of considering
cluster-wide failure events in the choice of replication
and recovery policies.

2 Background

We study end to end data availability in a cloud com-
puting storage environment. These environments often
use loosely coupled distributed storage systems such as
GFS [1, 16] due to the parallel I/O and cost advantages
they provide over traditional SAN and NAS solutions. A
few relevant characteristics of such systems are:

• Storage server programs running on physical ma-
chines in a datacenter, managing local disk storage
on behalf of the distributed storage cluster. We refer
to the storage server programs as storage nodes or
nodes.

• A pool of storage service masters managing data
placement, load balancing and recovery, and moni-
toring of storage nodes.

• A replication or erasure code mechanism for user
data to provide resilience to individual component
failures.

A large collection of nodes along with their higher
level coordination processes [17] are called a cell or
storage cell. These systems usually operate in a shared
pool of machines running a wide variety of applications.
A typical cell may comprise many thousands of nodes
housed together in a single building or set of colocated
buildings.

2.1 Availability

A storage node becomes unavailable when it fails to re-
spond positively to periodic health checking pings sent

 0

 20

 40

 60

 80

 100

1s 10s 1min 15min 1h 6h 1d 7d 1mon

E
ve

nt
s

(%
)

Unavailability event duration

Figure 1: Cumulative distribution function of the duration of
node unavailability periods.

by our monitoring system. The node remains unavail-
able until it regains responsiveness or the storage system
reconstructs the data from other surviving nodes.

Nodes can become unavailable for a large number of
reasons. For example, a storage node or networking
switch can be overloaded; a node binary or operating
system may crash or restart; a machine may experience
a hardware error; automated repair processes may tem-
porarily remove disks or machines; or the whole clus-
ter could be brought down for maintenance. The vast
majority of such unavailability events are transient and
do not result in permanent data loss. Figure 1 plots the
CDF of node unavailability duration, showing that less
than 10% of events last longer than 15 minutes. This
data is gathered from tens of Google storage cells, each
with 1000 to 7000 nodes, over a one year period. The
cells are located in different datacenters and geographi-
cal regions, and have been used continuously by different
projects within Google. We use this dataset throughout
the paper, unless otherwise specified.

Experience shows that while short unavailability
events are most frequent, they tend to have a minor im-
pact on cluster-level availability and data loss. This is
because our distributed storage systems typically add
enough redundancy to allow data to be served from other
sources when a particular node is unavailable. Longer
unavailability events, on the other hand, make it more
likely that faults will overlap in such a way that data
could become unavailable at the cluster level for long
periods of time. Therefore, while we track unavailabil-
ity metrics at multiple time scales in our system, in this
paper we focus only on events that are 15 minutes or
longer. This interval is long enough to exclude the ma-
jority of benign transient events while not too long to ex-
clude significant cluster-wide phenomena. As in [11], we
observe that initiating recovery after transient failures is
inefficient and reduces resources available for other op-
erations. For these reasons, GFS typically waits 15 min-
utes before commencing recovery of data on unavailable
nodes.

2

Anant Jain

Anant Jain

Anant Jain

Anant Jain

Anant Jain

Anant Jain

Anant Jain

Anant Jain

Anant Jain

We primarily use two metrics throughout this paper.
The average availability of allN nodes in a cell is defined
as:

AN =

∑
Ni∈N uptime(Ni)∑

Ni∈N (uptime(Ni) + downtime(Ni))
(1)

We use uptime(Ni) and downtime(Ni) to refer to the
lengths of time a node Ni is available or unavailable, re-
spectively. The sum of availability periods over all nodes
is called node uptime. We define uptime similarly for
other component types. We define unavailability as the
complement of availability.

Mean time to failure, or MTTF, is commonly quoted
in the literature related to the measurements of availabil-
ity. We use MTTF for components that suffer transient
or permanent failures, to avoid frequent switches in ter-
minology.

MTTF =
uptime

number failures
(2)

Availability measurements for nodes and individual
components in our system are presented in Section 3.

2.2 Data replication

Distributed storage systems increase resilience to fail-
ures by using replication [2] or erasure encoding across
nodes [28]. In both cases, data is divided into a set of
stripes, each of which comprises a set of fixed size data
and code blocks called chunks. Data in a stripe can be re-
constructed from some subsets of the chunks. For repli-
cation, R = n refers to n identical chunks in a stripe,
so the data may be recovered from any one chunk. For
Reed-Solomon erasure encoding, RS(n,m) denotes n
distinct data blocks andm error correcting blocks in each
stripe. In this case a stripe may be reconstructed from any
n chunks.

We call a chunk available if the node it is stored on
is available. We call a stripe available if enough of its
chunks are available to reconstruct the missing chunks,
if any.

Data availability is a complex function of the individ-
ual node availability, the encoding scheme used, the dis-
tribution of correlated node failures, chunk placement,
and recovery times that we will explore in the second part
of this paper. We do not explore related mechanisms for
dealing with failures, such as additional application level
redundancy and recovery, and manual component repair.

3 Characterizing Node Availability

Anything that renders a storage node unresponsive is
a potential cause of unavailability, including hardware

component failures, software bugs, crashes, system re-
boots, power loss events, and loss of network connec-
tivity. We include in our analysis the impact of software
upgrades, reconfiguration, and other maintenance. These
planned outages are necessary in a fast evolving datacen-
ter environment, but have often been overlooked in other
availability studies. In this section we present data for
storage node unavailability and provide some insight into
the main causes for unavailability.

3.1 Numbers from the fleet

Failure patterns vary dramatically across different hard-
ware platforms, datacenter operating environments, and
workloads. We start by presenting numbers for disks.

Disks have been the focus of several other studies,
since they are the system component that permanently
stores the data, and thus a disk failure potentially results
in permanent data loss. The numbers we observe for disk
and storage subsystem failures, presented in Table 2, are
comparable with what other researchers have measured.
One study [29] reports ARR (annual replacement rate)
for disks between 2% and 4%. Another study [19] fo-
cused on storage subsystems, thus including errors from
shelves, enclosures, physical interconnects, protocol fail-
ures, and performance failures. They found AFR (annual
failure rate) generally between 2% and 4%, but for some
storage systems values ranging between 3.9% and 8.3%.

For the purposes of this paper, we are interested in
disk errors as perceived by the application layer. This
includes latent sector errors and corrupt sectors on disks,
as well as errors caused by firmware, device drivers, con-
trollers, cables, enclosures, silent network and memory
corruption, and software bugs. We deal with these er-
rors with background scrubbing processes on each node,
as in [5, 31], and by verifying data integrity during client
reads [4]. Background scrubbing in GFS finds between
1 in 106 to 107 of older data blocks do not match the
checksums recorded when the data was originally writ-
ten. However, these cell-wide rates are typically concen-
trated on a small number of disks.

We are also concerned with node failures in addition
to individual disk failures. Figure 2 shows the distribu-
tion of three mutually exclusive causes of node unavail-
ability in one of our storage cells. We focus on node
restarts (software restarts of the storage program running
on each machine), planned machine reboots (e.g. ker-
nel version upgrades), and unplanned machine reboots
(e.g. kernel crashes). For the purposes of this figure we
do not exclude events that last less than 15 minutes, but
we still end the unavailability period when the system
reconstructs all the data previously stored on that node.
Node restart events exhibit the greatest variability in du-
ration, ranging from less than one minute to well over an

3

Anant Jain

Anant Jain

Anant Jain

Anant Jain

Anant Jain

Anant Jain

Anant Jain

Anant Jain

Anant Jain

 0

 20

 40

 60

 80

 100

1s 10s 1min 15min 1h 6h 1d 7d 1mon

E
ve

nt
s

(%
)

Unavailability event duration

Node restarts
Planned reboots

Unplanned reboots

Figure 2: Cumulative distribution function of node unavailabil-
ity durations by cause.

Time (months)

E
ve

nt
s

pe
r

10
00

 n
od

es
 p

er
 d

ay

0

10

20

30

40

Unknown
Node restarts
Planned reboots
Unplanned reboots

0 1 2 3

Figure 3: Rate of events per 1000 nodes per day, for one exam-
ple cell.

hour, though they usually have the shortest duration. Un-
planned reboots have the longest average duration since
extra checks or corrective action is often required to re-
store machines to a safe state.

Figure 3 plots the unavailability events per 1000 nodes
per day for one example cell, over a period of three
months. The number of events per day, as well as the
number of events that can be attributed to a given cause
vary significantly over time as operational processes,
tools, and workloads evolve. Events we cannot classify
accurately are labeled unknown.

The effect of machine failures on availability is de-
pendent on the rate of failures, as well as on how long
the machines stay unavailable. Figure 4 shows the node
unavailability, along with the causes that generated the
unavailability, for the same cell used in Figure 3. The
availability is computed with a one week rolling window,
using definition (1). We observe that the majority of un-
availability is generated by planned reboots.

Time (months)

0 1 2 3
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

U
na

va
ila

bi
lit

y
(%

)

Unknown
Node restarts
Planned reboots
Unplanned reboots

Figure 4: Storage node unavailability computed with a one
week rolling window, for one example cell.

Cause Unavailability (%)
average / min / max

Node restarts 0.0139 / 0.0004 / 0.1295
Planned machine reboots 0.0154 / 0.0050 / 0.0563

Unplanned machine reboots 0.0025 / 0.0000 / 0.0122
Unknown 0.0142 / 0.0013 / 0.0454

Table 1: Unavailability attributed to different failure causes,
over the full set of cells.

Table 1 shows the unavailability from node restarts,
planned and unplanned machine reboots, each of which
is a significant cause. The numbers are exclusive, thus
the planned machine reboots do not include node restarts.

Table 2 shows the MTTF for a series of important
components: disk, nodes, and racks of nodes. The num-
bers we report for component failures are inclusive of
software errors and hardware failures. Though disks fail-
ures are permanent and most node failures are transitory,
the significantly greater frequency of node failures makes
them a much more important factor for system availabil-
ity (Section 8.4).

4 Correlated Failures

The co-occurring failure of a large number of nodes
can reduce the effectiveness of replication and encoding
schemes. Therefore it is critical to take into account the
statistical behavior of correlated failures to understand
data availability. In this section we are more concerned
with measuring the frequency and severity of such fail-
ures rather than root causes.

4

Anant Jain

Anant Jain

Anant Jain

Component Disk Node Rack
MTTF 10-50 years 4.3 months 10.2 years

Table 2: Component failures across several Google cells.

> 2 min

} burst

Time (min)

burst}

0 5 10 15 20 25 30

N
od

es

Time intervals when a
node is unavailable

Figure 5: Seven node failures clustered into two failure bursts
when the window size is 2 minutes. Note how only the unavail-
ability start times matter.

We define a failure burst and examine features of these
bursts in the field. We also develop a method for identi-
fying which bursts are likely due to a failure domain. By
failure domain, we mean a set of machines which we ex-
pect to simultaneously suffer from a common source of
failure, such as machines which share a network switch
or power cable. We demonstrate this method by validat-
ing physical racks as an important failure domain.

4.1 Defining failure bursts

We define a failure burst with respect to a window size
w as a maximal sequence of node failures, each one oc-
curring within a time window w of the next. Figure 5
illustrates the definition. We choose w = 120 s, for sev-
eral reasons. First, it is longer than the frequency with
which nodes are periodically polled in our system for
their status. A window length smaller than the polling
interval would not make sense as some pairs of events
which actually occur within the window length of each
other would not be correctly associated. Second, it is less
than a tenth of the average time it takes our system to re-
cover a chunk, thus, failures within this window can be
considered as nearly concurrent. Figure 6 shows the frac-
tion of individual failures that get clustered into bursts of
at least 10 nodes as the window size changes. Note that
the graph is relatively flat after 120 s, which is our third
reason for choosing this value.

Since failures are clustered into bursts based on their
times of occurrence alone, there is a risk that two bursts
with independent causes will be clustered into a single
burst by chance. The slow increase in Figure 6 past 120 s
illustrates this phenomenon. The error incurred is small
as long as we keep the window size small. Given a win-
dow size of 120 s and the set of bursts obtained from it,
the probability that a random failure gets included in a

 0

 2

 4

 6

 8

 10

 12

 14

 0 100 200 300 400 500 600

N
od

e
fa

ilu
re

s
(%

)

Window size (s)

Figure 6: Effect of the window size on the fraction of individual
failures that get clustered into bursts of at least 10 nodes.

burst (as opposed to becoming its own singleton burst)
is 8.0%. When this inclusion happens, most of the time
the random failure is combined with a singleton burst to
form a burst of two nodes. The probability that a random
failure gets included in a burst of at least 10 nodes is only
0.068%. For large bursts, which contribute most unavail-
ability as we will see in Section 5.2, the fraction of nodes
affected is the significant quantity and changes insignifi-
cantly if a burst of size one or two nodes is accidentally
clustered with it.

Using this definition, we observe that 37% of failures
are part of a burst of at least 2 nodes. Given the result
above that only 8.0% of non-correlated failures may be
incorrectly clustered, we are confident that close to 37%
of failures are truly correlated.

4.2 Views of failure bursts

Figure 7 shows the accumulation of individual failures in
bursts. For clarity we show all bursts of size at least 10
seen over a 60 day period in an example cell. In the plot,
each burst is displayed with a separate shape. The n-th
node failure that joins a burst at time tn is said to have
ordinal n − 1 and is plotted at point (tn, n − 1). Two
broad classes of failure bursts can be seen in the plot:

1. Those failure bursts that are characterized by a large
number of failures in quick succession show up as
steep lines with a large number of nodes in the burst.
Such failures can be seen, for example, following a
power outage in a datacenter.

2. Those failure bursts that are characterized by a
smaller number of nodes failing at a slower rate
at evenly spaced intervals. Such correlated failures
can be seen, for example, as part of rolling reboot
or upgrade activity at the datacenter management
layer.

Figure 8 displays the bursts sorted by the number of
nodes and racks that they affect. The size of each bubble

5

Anant Jain

Anant Jain

Anant Jain

Anant Jain

Anant Jain

Anant Jain

Anant Jain

Anant Jain

0 100 200 300 400 500 600

0

10

20

30

40

50

Time from start of burst (s)

O
rd

in
al

 w
ith

in
 b

ur
st

●
●

●
●
●

●

●
●
●
●

●
●

●
●

●

Figure 7: Development of failure bursts in one example cell.

indicates the frequency of each burst group. The group-
ing of points along the 45◦ line represent bursts where
as many racks are affected as nodes. The points furthest
away from this line represent the most rack-correlated
failure bursts. For larger bursts of at least 10 nodes, we
find only 3% have all their nodes on unique racks. We
introduce a metric to quantify this degree of domain cor-
relation in the next section.

4.3 Identifying domain-related failures

Domain-related issues, such those associated with phys-
ical racks, network switches and power domains, are fre-
quent causes of correlated failure. These problems can
sometimes be difficult to detect directly. We introduce
a metric to measure the likelihood that a failure burst is
domain-related, rather than random, based on the pat-
tern of failure observed. The metric can be used as an
effective tool for identifying causes of failures that are
connected to domain locality. It can also be used to eval-
uate the importance of domain diversity in cell design
and data placement. We focus on detecting rack-related
node failures in this section, but our methodology can be
applied generally to any domain and any type of failure.

Let a failure burst be encoded as an n-tuple
(k1, k2, . . . , kn), where k1 ≤ k2 ≤ . . . ≤ kn. Each
ki gives the number of nodes affected in the i-th rack af-
fected, where racks are ordered so that these values are
increasing. This rack-based encoding captures all rele-
vant information about the rack locality of the burst. Let
the size of the burst be the number of nodes that are af-
fected, i.e.,

∑n
i=1 ki. We define the rack-affinity score of

●●●●●●● ●●●●●● ● ● ●●●● ● ● ● ●●●●●● ● ● ● ● ●●●● ● ● ● ●
● ●●●● ● ●

●●● ●
● ● ● ●●●

●●● ●
●● ●

● ●●● ●● ● ●●● ● ● ●● ● ●● ● ●● ● ●●●●● ●● ●● ● ●● ●● ●● ●●● ● ●●●● ●● ●● ● ●●● ● ●●
● ● ● ●● ●● ●● ●● ●● ●● ●● ● ●● ●●● ●● ● ●●●● ●● ●●

● ●
● ●●

● ●●●
● ●●

● ●●●● ●

● ●● ●● ●
● ●● ● ●

●●
●●

●

●● ●
●●

●

●

●

●●●

● ●
●

1 2 5 10 20 50 100 200 500

1

2

5

10

20

50

100

200

500

Number of racks affected

N
um

be
r

of
 n

od
es

 a
ffe

ct
ed

●

●

1 occurrence

10 occurrences

100 occurrences

1000 occurrences

Figure 8: Frequency of failure bursts sorted by racks and nodes
affected.

a burst to be
n∑

i=1

ki(ki − 1)

2

Note that this is the number of ways of choosing two
nodes from the burst within the same rack. The score
allows us to compare the rack concentration of bursts of
the same size. For example the burst (1, 4) has score 6.
The burst (1, 1, 1, 2) has score 1 which is lower. There-
fore, the first burst is more concentrated by rack. Possi-
ble alternatives for the score include the sum of squares∑n

i=1 k
2
i or the negative entropy

∑n
i=1 ki log(ki). The

sum of squares formula is equivalent to our chosen score
because for a fixed burst size, the two formulas are re-
lated by an affine transform. We believe the entropy-
inspired formula to be inferior because its log factor
tends to downplay the effect of a very large ki. Its real-
valued score is also a problem for the dynamic program
we use later in computation.

We define the rack affinity of a burst in a particular cell
to be the probability that a burst of the same size affecting
randomly chosen nodes in that cell will have a smaller
burst score, plus half the probability that the two scores
are equal, to eliminate bias. Rack affinity is therefore a
number between 0 and 1 and can be interpreted as a ver-
tical position on the cumulative distribution of the scores
of random bursts of the same size. It can be shown that
for a random burst, the expected value of its rack affin-
ity is exactly 0.5. So we define a rack-correlated burst
to be one with a metric close to 1, a rack-uncorrelated
burst to be one with a metric close to 0.5, and a rack-
anti-correlated burst to be one with a metric close to 0
(we have not observed such a burst). It is possible to ap-

6

Anant Jain

Anant Jain

Anant Jain

Anant Jain

Anant Jain

proximate the metric using simulation of random bursts.
We choose to compute the metric exactly using dynamic
programming because the extra precision it provides al-
lows us to distinguish metric values very close to 1.

We find that, in general, larger failure bursts have
higher rack affinity. All our failure bursts of more than
20 nodes have rack affinity greater than 0.7, and those
of more than 40 nodes have affinity at least 0.9. It is
worth noting that some bursts with high rack affinity do
not affect an entire rack and are not caused by common
network or power issues. This could be the case for a
bad batch of components or new storage node binary or
kernel, whose installation is only slightly correlated with
these domains.

5 Coping with Failure

We now begin the second part of the paper where we
transition from node failures to analyzing replicated data
availability. Two methods for coping with the large num-
ber of failures described in the first part of this paper
include data replication and recovery, and chunk place-
ment.

5.1 Data replication and recovery

Replication or erasure encoding schemes provide re-
silience to individual node failures. When a node fail-
ure causes the unavailability of a chunk within a stripe,
we initiate a recovery operation for that chunk from the
other available chunks remaining in the stripe.

Distributed filesystems will necessarily employ
queues for recovery operations following node failure.
These queues prioritize reconstruction of stripes which
have lost the most chunks. The rate at which missing
chunks may be recovered is limited by the bandwidth of
individual disks, nodes, and racks. Furthermore, there
is an explicit design tradeoff in the use of bandwidth
for recovery operations versus serving client read/write
requests.

0 2500 5500 8500 12000 16000 20000

Seconds from Server/Disk Failure to Chunk Recovery InitiationC
hu

nk
 R

ec
ov

er
ie

s

0
10

00
00

20
00

00

3 Unavailable Chunks in Stripe
2 Unavailable Chunks in Str
1 Unavailable Chunk in Str

0 2500 5500 8500 12000 16000 20000

Seconds from Server/Disk Failure to Chunk Recovery Initiation

C
hu

nk
 R

ec
ov

er
ie

s

0
10

00
00

20
00

00

3 Unavailable Chunks in Stripe
2 Unavailable Chunks in Stripe
1 Unavailable Chunk in Stripe

0 1000 2500 4000 5500 7000 8500 10000 12000 14000 16000 18000 20000 22000

Seconds from Server/Disk Failure to Chunk Recovery Initiation

C
hu

nk
 R

ec
ov

er
ie

s

0
10

00
00

25
00

00

Figure 9: Example chunk recovery after failure bursts.

This limit is particularly apparent during correlated
failures when a large number of chunks go missing at the
same time. Figure 9 shows the recovery delay after a fail-
ure burst of 20 storage nodes affecting millions of stripes.
Operators may adjust the rate-limiting seen in the figure.

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

 1e+14

 1e+16

 1e+18

 1e+20

small bursts medium bursts large bursts

S
tr

ip
e

M
T

T
F

 in
 d

ay
s

RS(20,10)
RS(9,4)
RS(5,3)

R=4
R=3
R=2
R=1

Figure 10: Stripe MTTF due to different burst sizes. Burst sizes
are defined as a fraction of all nodes: small (0-0.001), medium
(0.001-0.01), large (0.01-0.1). For each size, the left column
represents uniform random placement, and the right column
represents rack-aware placement.

The models presented in the following sections allow us
to measure the sensitivity of data availability to this rate-
limit and other parameters, described in Section 8.

5.2 Chunk placement and stripe unavailability

To mitigate the effect of large failure bursts in a single
failure domain we consider known failure domains when
placing chunks within a stripe on storage nodes. For ex-
ample, racks constitute a significant failure domain to
avoid. A rack-aware policy is one that ensures that no
two chunks in a stripe are placed on nodes in the same
rack.

Given a failure burst, we can compute the expected
fraction of stripes made unavailable by the burst. More
generally, we compute the probability that exactly k
chunks are affected in a stripe of size n, which is es-
sential to the Markov model of Section 7. Assuming that
stripes are uniformly distributed across nodes of the cell,
this probability is a ratio where the numerator is the num-
ber of ways to place a stripe of size n in the cell such
that exactly k of its chunks are affected by the burst, and
the denominator is the total number of ways to place a
stripe of size n in the cell. These numbers can be com-
puted combinatorially. The same ratio can be used when
chunks are constrained by a placement policy, in which
case the numerator and denominator are computed using
dynamic programming.

Figure 10 shows the stripe MTTF for three classes of
burst size. For each class of bursts we calculate the av-
erage fraction of stripes affected per burst and the rate
of bursts, to get the combined MTTF due to that class.
We see that for all encodings except R = 1, large fail-
ure bursts are the biggest contributor to unavailability

7

Anant Jain

Anant Jain

Anant Jain

Anant Jain

Anant Jain

Anant Jain

despite the fact that they are much rarer. We also see
that for small and medium bursts sizes, and large encod-
ings, using a rack-aware placement policy increases the
stripe MTTF by a factor of 3 typically. This is a signifi-
cant gain considering that in uniform random placement,
most stripes end up with their chunks on different racks
due to chance.

6 Cell Simulation

This section introduces a trace-based simulation method
for calculating availability in a cell. The method replays
observed or synthetic sequences of node failures and cal-
culates the resulting impact on stripe availability. It of-
fers detailed view of availability in short time frames.

For each node, the recorded events of interest are
down, up and recovery complete events. When all nodes
are up, they are each assumed to be responsible for an
equal number of chunks. When a node goes down it
is still responsible for the same number of chunks until
15 minutes later when the chunk recovery process starts.
For simplicity and conservativeness, we assume that all
these chunks remain unavailable until the recovery com-
plete event. A more accurate model could model recov-
ery too, such as by reducing the number of unavailable
chunks linearly until the recovery complete event, or by
explicitly modelling recovery queues.

We are interested in the expected number of stripes
that are unavailable for at least 15 minutes, as a function
of time. Instead of simulating a large number of stripes,
it is more efficient to simulate all possible stripes, and use
combinatorial calculations to obtain the expected number
of unavailable stripes given a set of down nodes, as was
done in Section 5.2.

As a validation, we can run the simulation using the
stripe encodings that were in use at the time to see if the
predicted number of unavailable stripes matches the ac-
tual number of unavailable stripes as measured by our
storage system. Figure 11 shows the result of such a
simulation. The prediction is a linear combination of the
predictions for individual encodings present, in this case
mostly RS(5, 3) and R = 3.

Analysis of hypothetical scenarios may also be made
with the cell simulator, such as the effect of encoding
choice and of chunk recovery rate. Although we may
not change the frequency and severity of bursts in an ob-
served sequence, bootstrap methods [13] may be used
to generate synthetic failure traces with different burst
characteristics. This is useful for exploring sensitivity to
these events and the impact of improvements in datacen-
ter reliability.

 1e-11

 1e-10

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

0:00 6:00 12:00 18:00 24:00

F
ra

ct
io

n
of

 u
na

va
ila

bl
e

st
rip

es

Time of day

Measured
Predicted

Figure 11: Unavailability prediction over time for a particular
cell for a day with large failure bursts.

7 Markov Model of Stripe Availability

In this section, we formulate a Markov model of data
availability. The model captures the interaction of dif-
ferent failure types and production parameters with more
flexibility than is possible with the trace-based simula-
tion described in the previous section. Although the
model makes assumptions beyond those in the trace-
based simulation method, it has certain advantages. First,
it allows us to model and understand the impact of
changes in hardware and software on end-user data avail-
ability. There are typically too many permutations of sys-
tem changes and encodings to test each in a live cell. The
Markov model allows us to reason directly about the con-
tribution to data availability of each level of the storage
stack and several system parameters, so that we can eval-
uate tradeoffs. Second, the systems we study may have
unavailability rates that are so low they are difficult to
measure directly. The Markov model handles rare events
and arbitrarily low stripe unavailability rates efficiently.

The model focuses on the availability of a representa-
tive stripe. Let s be the total number of chunks in the
stripe, and r be the minimum number of chunks needed
to recover that stripe. As described in Section 2.2, r = 1
for replicated data and r = n for RS(n,m) encoded
data. The state of a stripe is represented by the number of
available chunks. Thus, the states are s, s−1, . . . , r, r−1
with the state r − 1 representing all of the unavailable
states where the stripe has less than the required r chunks
available. Figure 12 shows a Markov chain correspond-
ing to an R = 2 stripe.

The Markov chain transitions are specified by the rates
at which a stripe moves from one state to another, due to
chunk failures and recoveries. Chunk failures reduce the
number of available chunks, and several chunks may fail
‘simultaneously’ in a failure burst event. Balancing this,
recoveries increase the number of available chunks if any

8

Anant Jain

Anant Jain

Anant Jain

Anant Jain

Anant Jain

Anant Jain

Anant Jain

2 0

Chunk recovery

1

Chunk failure

Stripe unavailable

Figure 12: The Markov chain for a stripe encoded using R = 2.

are unavailable.
A key assumption of the Markov model is that events

occur independently and with constant rates over time.
This independence assumption, although strong, is not
the same as the assumption that individual chunks fail
independently of each other. Rather, it implies that fail-
ure events are independent of each other, but each event
may involve multiple chunks. This allows a richer and
more flexible view of the system. It also implies that re-
covery rates for a stripe depend only on its own current
state.

In practice, failure events are not always independent.
Most notably, it has been pointed out in [29] that the time
between disk failures is not exponentially distributed and
exhibits autocorrelation and long-range dependence. The
Weibull distribution provides a much better fit for disk
MTTF.

However, the exponential distribution is a reason-
able approximation for the following reasons. First, the
Weibull distribution is a generalization of the exponen-
tial distribution that allows the rate parameter to increase
over time to reflect the aging of disks. In a large pop-
ulation of disks, the mixture of disks of different ages
tends to be stable, and so the average failure rate in a
cell tends to be constant. When the failure rate is stable,
the Weibull distribution provides the same quality of fit
as the exponential. Second, disk failures make up only
a small subset of failures that we examined, and model
results indicate that overall availability is not particularly
sensitive to them. Finally, other authors ([24]) have con-
cluded that correlation and non-homogeneity of the re-
covery rate and the mean time to a failure event have
a much smaller impact on system-wide availability than
the size of the event.

7.1 Construction of the Markov chain

We compute the transition rate due to failures using ob-
served failure events. Let λ denote the rate of failure
events affecting chunks, including node and disk failures.
For any observed failure event we compute the probabil-
ity that it affects k chunks out of the i available chunks in
a stripe. As in Section 6, for failure bursts this computa-
tion takes into account the stripe placement strategy. The
rate and severity of bursts, node, disk, and other failures

may be adjusted here to suit the system parameters under
exploration.

Averaging these probabilities over all failures events
gives the probability, pi,j , that a random failure event will
affect i−j out of i available chunks in a stripe. This gives
a rate of transition from state i to state j < i, of λi,j =

λpi,j for s ≥ i > j ≥ r and λi,r−1 = λ
∑r−1

j=0 pi,j
for the rate of reaching the unavailable state. Note that
transitions from a state to itself are ignored.

For chunk recoveries, we assume a fixed rate of ρ for
recovering a single chunk, i.e. moving from a state i to
i + 1, where r ≤ i < s. In particular, this means we as-
sume that the recovery rate does not depend on the total
number of unavailable chunks in the cell. This is justi-
fied by setting ρ to a lower bound for the rate of recovery,
based on observed recovery rates across our storage cells
or proposed system performance parameters. While par-
allel recovery of multiple chunks from a stripe is possi-
ble, ρi,i+1 = (s − i)ρ, we model serial recovery to gain
more conservative estimates of stripe availability.

As with [12], the distributed systems we study use pri-
oritized recovery for stripes with more than one chunk
unavailable. Our Markov model allows state-dependent
recovery that captures this prioritization, but for ease of
exposition we do not use this added degree of freedom.

Finally, transition rates between pairs of states not
mentioned are zero.

With the Markov chain thus completely specified,
computing the MTTF of a stripe, as the mean time to
reach the ‘unavailable state’ r − 1 starting from state s,
follows by standard methods [27].

7.2 Extension to multi-cell replication

The models introduced so far can be extended to compute
the availability of multi-cell replication schemes. An ex-
ample of such a scheme is R = 3× 2, where six replicas
of the data are distributed asR = 3 replication in each of
two linked cells. If data becomes unavailable at one cell
then it is automatically recovered from another linked
cell. These cells may be placed in separate datacenters,
even on separate continents. Reed-Solomon codes may
also be used, giving schemes such as RS(6, 3) × 3 for
three cells each with a RS(6, 3) encoding of the data.
We do not consider here the case when individual chunks
may be combined from multiple cells to recover data, or
other more complicated multi-cell encodings.

We compute the availability of stripes that span cells
by building on the Markov model just presented. Intu-
itively, we treat each cell as a ‘chunk’ in the multi-cell
‘stripe’, and compute its availability using the Markov
model. We assume that failures at different data centers
are independent, that is, that they lack a single point of
failure such as a shared power plant or network link. Ad-

9

Anant Jain

Anant Jain

Anant Jain

Anant Jain

Anant Jain

ditionally, when computing the cell availability, we ac-
count for any cell-level or datacenter-level failures that
would affect availability.

We build the corresponding transition matrix that
models the resulting multi-cell availability as follows.
We start from the transition matrices Mi for each cell,
as explained in the previous section. We then build the
transition matrix for the combined scheme as the tensor
product of these,

⊗
iMi, plus terms for whole cell fail-

ures, and for cross-cell recoveries if the data becomes
unavailable in some cells but is still available in at least
one cell. However, it is a fair approximation to simply
treat each cell as a highly-reliable chunk in a multi-cell
stripe, as described above.

Besides symmetrical cases, such as R = 3 × 2 repli-
cation, we can also model inhomogeneous replication
schemes, such as one cell with R = 3 and one with
R = 2. The state space of the Markov model is the
product of the state space for each cell involved, but may
be approximated again by simply counting how many of
each type of cell is available.

A point of interest here is the recovery bandwidth be-
tween cells, quantified in Section 8.5. Bandwidth be-
tween distant cells has significant cost which should
be considered when choosing a multi-cell replication
scheme.

8 Markov Model Findings

In this section, we apply the Markov models described
above to understand how changes in the parameters of
the system will affect end-system availability.

8.1 Markov model validation

We validate the Markov model by comparing MTTF pre-
dicted by the model with actual MTTF values observed
in production cells. We are interested in whether the
Markov model provides an adequate tool for reasoning
about stripe availability. Our main goal in using the
model is providing a relative comparison of competing
storage solutions, rather than a highly accurate predic-
tion of any particular solution.

We underline two observations that surface from val-
idation. First, the model is able to capture well the ef-
fect of failure bursts, which we consider as having the
most impact on the availability numbers. For the cells we
observed, the model predicted MTTF with the same or-
der of magnitude as the measured MTTF. In one particu-
lar cell, besides more regular unavailability events, there
was a large failure burst where tens of nodes became un-
available. This resulted in an MTTF of 1.76E+6 days,
while the model predicted 5E+6 days. Though the rela-
tive error exceeds 100%, we are satisfied with the model

accuracy, since it still gives us a powerful enough tool to
make decisions, as can be seen in the following sections.

Second, the model can distinguish between failure
bursts that span racks, and thus pose a threat to availabil-
ity, and those that do not. If one rack goes down, then
without other events in the cell, the availability of stripes
with R=3 replication will not be affected, since the stor-
age system ensures that chunks in each stripe are placed
on different racks. For one example cell, we noticed tens
of medium sized failure bursts that affected one or two
racks. We expected the availability of the cell to stay
high, and indeed we measured MTTF = 29.52E+8 days.
The model predicted 5.77E+8 days. Again, the relative
error is significant, but for our purposes the model pro-
vides sufficiently accurate predictions.

Validating the model for all possible replication and
Reed-Solomon encodings is infeasible, since our produc-
tion cells are not set up to cover the complete space of
options. However, because of our large number of pro-
duction cells we are able to validate the model over a
range of encodings and operating conditions.

8.2 Importance of recovery rate

To develop some intuition about the sensitivity of stripe
availability to recovery rate, consider the situation where
there are no failure bursts. Chunks fail independently
with rate λ and recover with rate ρ. As in the previous
section, consider a stripe with s chunks total which can
survive losing at most s−r chunks, such asRS(r, s− r).
Thus the transition rate from state i ≥ r to state i − 1 is
iλ, and from state i to i+ 1 is ρ for r ≥ i < s.

We compute the MTTF, given by the time taken to
reach state r−1 starting in state s. Using standard meth-
ods related to Gambler’s Ruin, [8, 14, 15, 26], this comes
to:

1

λ

(
s−r∑
k=0

k∑
i=0

ρi

λi
1

(s− k + i)(i+1)

)
where (a)(b) denotes (a)(a− 1)(a− 2) · · · (a− b+ 1).

Assuming recoveries take much less time than node
MTTF (i.e. ρ >> λ), gives a stripe MTTF of:

ρs−r

λs−r+1

1

(s)(s−r+1)
+O

(
ρs−r−1

λs−r

)
By similar computations, the recovery bandwidth con-

sumed is approximately λs per r data chunks.
Thus, with no correlated failures reducing recovery

times by a factor of µ will increase stripe MTTF by a
factor of µ2 for R = 3 and by µ4 for RS(9, 4).

Reducing recovery times is effective when correlated
failures are few. ForRS(6, 3) with no correlated failures,
a 10% reduction in recovery time results in a 19% reduc-
tion in unavailability. However, when correlated failures

10

Anant Jain

Anant Jain

Anant Jain

Anant Jain

Anant Jain

Policy MTTF(days) with MTTF(days) w/o
(% overhead) correlated failures correlated failures
R = 2 (100) 1.47E + 5 4.99E + 05
R = 3 (200) 6.82E + 6 1.35E + 09
R = 4 (300) 1.40E + 8 2.75E + 12
R = 5 (400) 2.41E + 9 8.98E + 15
RS(4, 2) (50) 1.80E + 6 1.35E + 09
RS(6, 3) (50) 1.03E + 7 4.95E + 12
RS(9, 4) (44) 2.39E + 6 9.01E + 15
RS(8, 4) (50) 5.11E + 7 1.80E + 16

Table 3: Stripe MTTF in days, corresponding to various data
redundancy policies and space overhead.

Policy MTTF Bandwidth
(recovery time) (days) (per PB)
R = 2× 2(1day) 1.08E + 10 6.8MB/day
R = 2× 2(1hr) 2.58E + 11 6.8MB/day

RS(6, 3)× 2(1day) 5.32E + 13 97KB/day
RS(6, 3)× 2(1hr) 1.22E + 15 97KB/day

Table 4: Stripe MTTF and inter-cell bandwidth, for various
multi-cell schemes and inter-cell recovery times.

are taken into account, even a 90% reduction in recovery
time results in only a 6% reduction in unavailability.

8.3 Impact of correlation on effectiveness of data-
replication schemes

Table 3 presents stripe availability for several data-
replication schemes, measured in MTTF. We contrast
this with stripe MTTF when node failures occur at the
same total rate but are assumed independent.

Note that failing to account for correlation of node fail-
ures typically results in overestimating availability by at
least two orders of magnitude, and eight in the case of
RS(8,4). Correlation also reduces the benefit of increas-
ing data redundancy. The gain in availability achieved
by increasing the replication number, for example, grows
much more slowly when we have correlated failures.
Reed Solomon encodings achieve similar resilience to
failures compared to replication, though with less stor-
age overhead.

8.4 Sensitivity of availability to component failure
rates

One common method for improving availability is reduc-
ing component failure rates. By inserting altered failure
rates of hardware into the model we can estimate the im-
pact of potential improvements without actually building
or deploying new hardware.

We find that improvements below the node (server)

layer of the storage stack do not significantly improve
data availability. Assuming R = 3 is used, a 10% re-
duction in the latent disk error rate has a negligible effect
on stripe availability. Similarly, a 10% reduction in the
disk failure rate increases stripe availability by less than
1.5%. On the other hand, cutting node failure rates by
10% can increase data availability by 18%. This holds
generally for other encodings.

8.5 Single vs multi-cell replication schemes

Table 4 compares stripe MTTF under several multi-cell
replication schemes and inter-cell recovery times, taking
into consideration the effect of correlated failures within
cells.

Replicating data across multiple cells (data centers)
greatly improves availability because it protects against
correlated failures. For example, R = 2 × 2 with 1 day
recovery time between cells has two orders of magnitude
longer MTTF than R = 4, shown in Table 3.

This introduces a tradeoff between higher replication
in a single cell and the cost of inter-cell bandwidth. The
extra availability forR = 2×2 with 1 day recoveries ver-
susR = 4 comes at an average cost of 6.8 MB/(user PB)
copied between cells each day. This is the inverse MTTF
for R = 2.

It should be noted that most cross-cell recoveries will
occur in the event of large failure bursts. This must be
considered when calculating expected recovery times be-
tween cells and the cost of on-demand access to poten-
tially large amounts of bandwidth.

Considering the relative cost of storage versus recov-
ery bandwidth allows us to choose the most cost effective
scheme given particular availability goals.

9 Related Work

Several previous studies [3, 19, 25, 29, 30] focus on the
failure characteristics of independent hardware compo-
nents, such as hard drives, storage subsystems, or mem-
ory. As we have seen, these must be included when con-
sidering availability but by themselves are insufficient.

We focus on failure bursts, since they have a large in-
fluence on the availability of the system. Previous litera-
ture on failure bursts has focused on methods for discov-
ering the relationship between the size of a failure event
and its probability of occurrence. In [10], the existence
of near-simultaneous failures in two large distributed sys-
tems is reported. The beta-binomial density and the bi-
exponential density are used to fit these distributions in
[6] and [24], respectively. In [24], the authors further
note that using an over-simplistic model for burst size,
for example a single size, could result in “dramatic inac-
curacies” in practical settings. On the other hand, even

11

Anant Jain

Anant Jain

Anant Jain

Anant Jain

Anant Jain

Anant Jain

Anant Jain

though the mean time to failure and mean time to recov-
ery of system nodes tend to be non-uniform and corre-
lated, this particular correlation effect has only a limited
impact on system-wide availability.

There is limited previous work on discovering patterns
of correlation in failures. The conditional probability of
failures for each pair of nodes in a system has been pro-
posed in [6] as a measure of correlation in the system.
This computation extends heuristically to sets of larger
nodes. A paradigm for discovering maximally indepen-
dent groups of nodes in a system to cope with correlated
failures is discussed in [34]. That paradigm involves col-
lecting failure statistics on each node in the system and
computing a measure of correlation, such as the mutual
information, between every pair of nodes. Both of these
approaches are computationally intensive and the results
found, unlike ours, are not used to build a predictive an-
alytical model for availability.

Models that have been developed to study the relia-
bility of long-term storage fall into two categories, non-
Markov and Markov models. Those in the first category
tend to be less versatile. For example, in [5] the prob-
ability of multiple faults occurring during the recovery
period of a stripe is approximated. Correlation is intro-
duced by means of a multiplicative factor that is applied
to the mean time to failure of a second chunk when the
first chunk is already unavailable. This approach works
only for stripes that are replicated and is not easily ex-
tendable to Reed-Solomon encoding. Moreover, the fac-
tor controlling time correlation is neither measurable nor
derivable from other data.

In [33], replication is compared with Reed-Solomon
with respect to storage requirement, bandwidth for write
and repair and disk seeks for reads. However, the com-
parison assumes that sweep and repair are performed at
regular intervals, as opposed to on demand.

Markov models are able to capture the system much
more generally and can be used to model both replication
and Reed-Solomon encoding. Examples include [21],
[32], [11] and [35]. However, these models all assume
independent failures of chunks. As we have shown, this
assumption potentially leads to overestimation of data
availability by many orders of magnitude. The authors
of [20] build a tool to optimize the disaster recovery ac-
cording to availability requirements, with similar goals
as our analysis of multi-cell replication. However, they
do not focus on studying the effect of failure characteris-
tics and data redundancy options.

Node availability in our environment is different from
previous work, such as [7, 18, 23], because we study a
large system that is tightly coupled in a single administra-
tive domain. These studies focus on measuring and pre-
dicting availability of individual desktop machines from
many, potentially untrusted, domains. Other authors

[11] studied data replication in face of failures, though
without considering availability of Reed-Solomon en-
codings or multi-cell replication.

10 Conclusions

We have presented data from Google’s clusters that char-
acterize the sources of failures contributing to unavail-
ability. We find that correlation among node failures
dwarfs all other contributions to unavailability in our pro-
duction environment.

In particular, though disks failures can result in per-
manent data loss, the multitude of transitory node fail-
ures account for most unavailability. We present a simple
time-window-based method to group failure events into
failure bursts which, despite its simplicity, successfully
identifies bursts with a common cause. We develop ana-
lytical models to reason about past and future availability
in our cells, including the effects of different choices of
replication, data placement and system parameters.

Inside Google, the analysis described in this paper has
provided a picture of data availability at a finer granu-
larity than previously measured. Using this framework,
we provide feedback and recommendations to the de-
velopment and operational engineering teams on differ-
ent replication and encoding schemes, and the primary
causes of data unavailability in our existing cells. Spe-
cific examples include:

• Determining the acceptable rate of successful trans-
fers to battery power for individual machines upon
a power outage.

• Focusing on reducing reboot times, because
planned kernel upgrades are a major source of cor-
related failures.

• Moving towards a dynamic delay before initiating
recoveries, based on failure classification and recent
history of failures in the cell.

Such analysis complements the intuition of the design-
ers and operators of these complex distributed systems.

Acknowledgments

Our findings would not have been possible without the
help of many of our colleagues. We would like to
thank the following people for their contributions to
data collection: Marc Berhault, Eric Dorland, Sangeetha
Eyunni, Adam Gee, Lawrence Greenfield, Ben Kochie,
and James O’Kane. We would also like to thank a num-
ber of our colleagues for helping us improve the presen-
tation of these results. In particular, feedback from John
Wilkes, Tal Garfinkel, and Mike Marty was helpful. We

12

Anant Jain

Anant Jain

Anant Jain

Anant Jain

would also like to thank our shepherd Bianca Schroeder
and the anonymous reviewers for their excellent feed-
back and comments, all of which helped to greatly im-
prove this paper.

References
[1] HDFS (Hadoop Distributed File System) architecture.

http://hadoop.apache.org/common/docs/
current/hdfs_design.html, 2009.

[2] ANDREAS, E. S., HAEBERLEN, A., DABEK, F., GON CHUN,
B., WEATHERSPOON, H., MORRIS, R., KAASHOEK, M. F.,
AND KUBIATOWICZ, J. Proactive replication for data durability.
In Proceedings of the 5th Intl Workshop on Peer-to-Peer Systems
(IPTPS) (2006).

[3] BAIRAVASUNDARAM, L. N., GOODSON, G. R., PASUPATHY,
S., AND SCHINDLER, J. An analysis of latent sector errors
in disk drives. In SIGMETRICS ’07: Proceedings of the 2007
ACM SIGMETRICS International Conference on Measurement
and Modeling of Computer Systems (2007), pp. 289–300.

[4] BAIRAVASUNDARAM, L. N., GOODSON, G. R., SCHROEDER,
B., ARPACI-DUSSEAU, A. C., AND ARPACI-DUSSEA, R. H.
An analysis of data corruption in the storage stack. In FAST ’08:
Proceedings of the 6th USENIX Conference on File and Storage
Technologies (2008), pp. 1–16.

[5] BAKER, M., SHAH, M., ROSENTHAL, D. S. H., ROUSSOPOU-
LOS, M., MANIATIS, P., GIULI, T., AND BUNGALE, P. A fresh
look at the reliability of long-term digital storage. In EuroSys ’06:
Proceedings of the 1st ACM SIGOPS/EuroSys European Confer-
ence on Computer Systems (2006), pp. 221–234.

[6] BAKKALOGLU, M., WYLIE, J. J., WANG, C., AND GANGER,
G. R. Modeling correlated failures in survivable storage systems.
In Fast Abstract at International Conference on Dependable Sys-
tems & Networks (June 2002).

[7] BOLOSKY, W. J., DOUCEUR, J. R., ELY, D., AND THEIMER,
M. Feasibility of a serverless distributed file system deployed on
an existing set of desktop PCs. In SIGMETRICS ’00: Proceed-
ings of the 2000 ACM SIGMETRICS international conference on
measurement and modeling of computer systems (2000), pp. 34–
43.

[8] BROWN, D. M. The first passage time distribution for a paral-
lel exponential system with repair. In Reliability and fault tree
analysis (1974), Defense Technical Information Center.

[9] CHANG, F., DEAN, J., GHEMAWAT, S., HSIEH, W. C., WAL-
LACH, D. A., BURROWS, M., CHANDRA, T., FIKES, A., AND
GRUBER, R. E. Bigtable: a distributed storage system for struc-
tured data. In OSDI ’06: Proceedings of the 7th Symposium
on Operating Systems Design and Implementation (Nov. 2006),
pp. 205–218.

[10] CHARACTERISTICS, M. F., YALAG, P., NATH, S., YU, H.,
GIBBONS, P. B., AND SESHAN, S. Beyond availability: To-
wards a deeper understanding of machine failure characteristics
in large distributed systems. In WORLDS ’04: First Workshop on
Real, Large Distributed Systems (2004).

[11] CHUN, B.-G., DABEK, F., HAEBERLEN, A., SIT, E., WEATH-
ERSPOON, H., KAASHOEK, M. F., KUBIATOWICZ, J., AND
MORRIS, R. Efficient replica maintenance for distributed stor-
age systems. In NSDI ’06: Proceedings of the 3rd conference on
Networked Systems Design & Implementation (2006), pp. 45–58.

[12] CORBETT, P., ENGLISH, B., GOEL, A., GRCANAC, T.,
KLEIMAN, S., LEONG, J., AND SANKAR, S. Row-diagonal par-
ity for double disk failure correction. In FAST ’04: Proceedings
of the 3rd USENIX Conference on File and Storage Technologies
(2004), pp. 1–14.

[13] EFRON, B., AND TIBSHIRANI, R. An Introduction to the Boot-
strap. Chapman and Hall, 1993.

[14] EPSTEIN, R. The Theory of Gambling and Statistical Logic. Aca-
demic Press, 1977.

[15] FELLER, W. An Introduction to Probability Theory and Its Ap-
plication. John Wiley and Sons, 1968.

[16] GHEMAWAT, S., GOBIOFF, H., AND LEUNG, S.-T. The Google
file system. In SOSP ’03: Proceedings of the 19th ACM Sympo-
sium on Operating Systems Principles (Oct. 2003), pp. 29–43.

[17] ISARD, M. Autopilot: automatic data center management. ACM
SIGOPS Opererating Systems Review 41, 2 (2007), 60–67.

[18] JAVADI, B., KONDO, D., VINCENT, J.-M., AND ANDERSON,
D. Mining for statistical models of availability in large-scale
distributed systems: An empirical study of SETI@home (2009).
pp. 1–10.

[19] JIANG, W., HU, C., ZHOU, Y., AND KANEVSKY, A. Are disks
the dominant contributor for storage failures?: a comprehensive
study of storage subsystem failure characteristics. In FAST ’08:
Proceedings of the 6th USENIX Conference on File and Storage
Technologies (2008), pp. 1–15.

[20] KEETON, K., SANTOS, C., BEYER, D., CHASE, J., AND
WILKES, J. Designing for disasters. In FAST ’04: Proceedings
of the 3rd USENIX Conference on File and Storage Technologies
(2004), pp. 59–62.

[21] LIAN, Q., CHEN, W., AND ZHANG, Z. On the impact of replica
placement to the reliability of distributed brick storage systems.
In ICDCS ’05: Proceedings of the 25th IEEE International Con-
ference on Distributed Computing Systems (2005), pp. 187–196.

[22] MCKUSICK, M. K., AND QUINLAN, S. GFS: Evolution on fast-
forward. Communications of the ACM 53, 3 (2010), 42–49.

[23] MICKENS, J. W., AND NOBLE, B. D. Exploiting availability
prediction in distributed systems. In NSDI ’06: Proceedings of
the 3rd conference on Networked Systems Design & Implementa-
tion (2006), pp. 73–86.

[24] NATH, S., YU, H., GIBBONS, P. B., AND SESHAN, S. Sub-
tleties in tolerating correlated failures in wide-area storage sys-
tems. In NSDI ’06: Proceedings of the 3rd conference on Net-
worked Systems Design & Implementation (2006), pp. 225–238.

[25] PINHEIRO, E., WEBER, W.-D., AND BARROSO, L. A. Failure
trends in a large disk drive population. In FAST ’07: Proceedings
of the 5th USENIX conference on File and Storage Technologies
(2007), pp. 17–23.

[26] RAMABHADRAN, S., AND PASQUALE, J. Analysis of long-
running replicated systems. In INFOCOM 2006. 25th IEEE In-
ternational Conference on Computer Communications (2006),
pp. 1–9.

[27] RESNICK, S. I. Adventures in stochastic processes. Birkhauser
Verlag, 1992.

[28] RODRIGUES, R., AND LISKOV, B. High availability in DHTs:
Erasure coding vs. replication. In Proceedings of the 4th Interna-
tional Workshop on Peer-to-Peer Systems (2005).

[29] SCHROEDER, B., AND GIBSON, G. A. Disk failures in the real
world: what does an MTTF of 1,000,000 hours mean to you? In
FAST ’07: Proceedings of the 5th USENIX conference on File
and Storage Technologies (2007), pp. 1–16.

[30] SCHROEDER, B., PINHEIRO, E., AND WEBER, W.-D. DRAM
errors in the wild: a large-scale field study. In SIGMETRICS
’09: Proceedings of the Eleventh International Joint Conference
on Measurement and Modeling of Computer Systems (2009),
pp. 193–204.

13

[31] SCHWARZ, T. J. E., XIN, Q., MILLER, E. L., LONG, D. D. E.,
HOSPODOR, A., AND NG, S. Disk scrubbing in large archival
storage systems. International Symposium on Modeling, Analy-
sis, and Simulation of Computer Systems (2004), 409–418.

[32] T., S. Generalized Reed Solomon codes for erasure correction in
SDDS. In WDAS-4: Workshop on Distributed Data and Struc-
tures (2002).

[33] WEATHERSPOON, H., AND KUBIATOWICZ, J. Erasure coding
vs. replication: A quantitative comparison. In IPTPS ’01: Re-
vised Papers from the First International Workshop on Peer-to-
Peer Systems (2002), Springer-Verlag, pp. 328–338.

[34] WEATHERSPOON, H., MOSCOVITZ, T., AND KUBIATOWICZ,
J. Introspective failure analysis: Avoiding correlated failures in
peer-to-peer systems. In SRDS ’02: Proceedings of the 21st IEEE
Symposium on Reliable Distributed Systems (2002), pp. 362–367.

[35] XIN, Q., MILLER, E. L., SCHWARZ, T., LONG, D. D. E.,
BRANDT, S. A., AND LITWIN, W. Reliability mechanisms for
very large storage systems. In MSS ’03: Proceedings of the 20th
IEEE / 11th NASA Goddard Conference on Mass Storage Systems
and Technologies (2003), pp. 146–156.

14

