system evolution

Tor24

Borg, Omega, and
Kubernetes

BRENDAN BURNS,
BRIAN GRANT,

DAVID OPPENHEIMER,
ERIC BREWER, AND
JOHN WILKES,
GOOGLE INC.

LESSONS
LEARNED FROM
THREE CONTAINER-
@ hough widespread interest MANAGEMENT
in software containers SYSTEMS OVER
is a relatively recent A DECADE
phenomenon, at Google we

have been managing Linux containers at scale for
more than ten years and built three different container-
management systems in that time. Each system was heavily
influenced by its predecessors, even though they were
developed for different reasons. This article describes the
lessons we've learned from developing and operating them.
The first unified container-management system
developed at Google was the system we internally call Borg/’
It was built to manage both long-running services and batch
jobs, which had previously been handled by two separate
systems: Babysitter and the Global Work Queue. The latter’s
architecture strongly influenced Borg, but was focused on
batch jobs; both predated Linux control groups. Borg shares
machines between these two types of applications as a
way of increasing resource utilization and thereby reducing
costs. Such sharing was possible because container support
in the Linux kernel was becoming available (indeed, Google
contributed much of the container code to the Linux kernel],
which enabled better isolation between latency-sensitive
user-facing services and CPU-hungry batch processes.

acmqueue | january-february 2016 70

TEXT
ONLY

Anant Jain

system evolution

20F 24

As more and more applications were developed to run
on top of Borg, our application and infrastructure teams
developed a broad ecosystem of tools and services for

it.

The development of this ecosystem was driven by the
needs of different teams inside Google, and the result was
a somewhat heterogeneous, ad-hoc collection of systems
that Borg's users had to configure and interact with, using
several different configuration languages and processes.
Borg remains the primary container-management system
within Google because of its scale, breadth of features, and
extreme robustness.

It applied many of the patterns that had proved successful
in Borg, but was built from the ground up to have a more

consistent, principled architecture. Ofegastored thestate
of the cluster in a centralized Paxos-based transaction-

€entralizedmaster Many of Omega'’s innovations (including

acmqueue | january-february 2016 71

Anant Jain

Anant Jain

Anant Jain

Anant Jain

system evolution

30oF24

multiple schedulers) have since been folded into Borg.

| I

Kubernetes is open source—a contrast to Borg and Omega,

=
=
(@]
0
=
®
-
®
o
®
<
®
o
o
)
@D
a
o
(%]
o
[
-
®
©
<
@
o
o
00
Q
®
i
S
=1
®
-
>
oy
@
(%)
<
(%)
v
®
3
(%)

. More importantly, Kubernetes
was developed with a stronger focus on the experience of
developers writing applications that run in a cluster: {ESifain

This article describes some of the knowledge gained
and lessons learned during Google’s journey from Borg to

Historically, the first containers just provided isolation of the
root file system (via chroot], with FFEEBSDJails extending

acmgqueue | january-february 2016 72

Anant Jain

Anant Jain

Anant Jain

Anant Jain

Anant Jain

system evolution

4 0oF 24

this to additional namespaces such as process IDs. SOLaFis
subsequently pioneered and explored many enhancements.

Cinux'controligroups (cgroups) adopted many of these ideas,

and development in this area continues today.

{RAUSERY AGFMS. For example, Borg uses containers to co-

locate batch jobs with latency-sensitive, user-facing jobs on

the same physical machines. The'iser=facing jobs reserve

resources can be reclaimed to run batch jobs. Containers

provide the resource-management tools that make this
possible, as well as robust kernel-level resource isolation

to prevent the processes from interfering with one another.
We achieved this by enhancing Linux containers concurrently

’

2
=
-0
@
o)
-
o
(%]
a
)
<
D)
o
o
©°
3
®
=)
=

feappliEaton e haE RS SIGeREEBEaInen \ithin Google,
MPM (Midas Package Manager] is used to build and deploy
container images. The same symbiotic relationship between
the isolation mechanism and MPM packages can be found

acmqueue | january-february 2016 73

Anant Jain

Anant Jain

Anant Jain

Anant Jain

Anant Jain

Anant Jain

system evolution

Sor24

between the Docker daemon and the Docker image registry
In the remainder of this article we use the word container to

APPLICATION-ORIENTED INFRASTRUCTURE
ver time it became clear that the benefits of

| containerization go beyond merely enabling higher
evels of utilization. Containerization transforms

being application=oriented: This section discusses

two examples:

= Containers encapsulate the application environment,
abstracting away many details of machines and operating
systems from the application developer and the deployment
infrastructure.

= Because well-designed containers and container images
are scoped to a single application, managing containers
means managing applications rather than machines. Thi$

Application environment

The original purpose of the cgroup, chroot, and namespace
facilities in the kernel was to protect applications from
noisy, nosey, and messy neighbors. Combining these with
container images created an abstraction that also isolates
applications from the (heterogeneous] operating systems

acmqueue |january-february 2016 74

Anant Jain

Anant Jain

Anant Jain

Anant Jain

system evolution 60F24

on which they run.

The key to making this abstraction work is having a
hermetic container image that can encapsulate almost all
of an application’s dependencies into a package that can

be deployed into the container. (FthiSiSdone correctly:

hope is that ongoing efforts such as the Open'Containen
(Ritiative (https:llwww.opencontainers.orgl) will further

clarify the surface area of the container abstraction.

Nonetheless, the isolation and dependency minimization
provided by containers have proved quite effective at
Google, and the container has become the sole runnable
entity supported by the Google infrastructure. One
consequence is that Google has only a small number of OS
versions deployed across its entire fleet of machines at any
one time, and it needs only a small staff of people to maintain
them and push out new versions.

There are many ways to achieve these hermetic images.
In Borg, program binaries are statically linked at build time
to known-good library versions hosted in the company-wide

acmqueue | january-february 2016 75

Anant Jain

Anant Jain

Anant Jain

system evolution

o uilding
jimanage-
2% ment APIs
Haround
containers
rather than
machines shifts
the “primary
key” of the data
center from
machine to
application.

7oF24

5

ﬁ
®

he]
o
=)
=
o
-

<

More modern container image formats such as Docker
and ACl harden this abstraction further and get closer to the
hermetic ideal by eliminating implicit host OS dependencies
and requiring an explicit user command to share image data
between containers.

Containers as the unit of management

. This has many benefits: (1] it relieves
application developers and operations teams from worrying
about specific details of machines and operating systems;

2} it provides the infrastructure team flexibility to roll out
new hardware and upgrade operating systems with minimal
impact on running applications and their developers; and (8)

Containers provide convenient points to register

acmqueue | january-february 2016 76

Anant Jain

Anant Jain

Anant Jain

system evolution

8or24

generic APIs that enable the flow of information between
the management system and an application without
either knowing much about the particulars of the other’s

implementation. (BEFE EhiSAPIISESEriesof HTTP

Grchestrator. \When an unhealthy application is detected, it
is automatically terminated and restarted. This self-healing
is a key building block for reliable distributed systems.
(Kubernetes offers similar functionality; the health check
uses a user-specified HTTP endpoint or exec command that
runs inside the container)

Additional information can be provided by or for
containers and displayed in various user interfaces. For
example, Borg applications can provide a simple text status
message that can be updated dynamically, and KUBEFRELES

In the other direction, the container-management system
can communicate information into the container such as
resource limits, container metadata for propagation to
logging and monitoring (e.g., user name, job name, identity),
and notices that provide graceful-termination warnings in
advance of node maintenance.

Containers can also provide application-oriented
monitoring in other ways: for example, Linux kernel cgroups

acmqueue | january-february 2016 77

Anant Jain

Anant Jain

system evolution

9or 24

provide resource-utilization data about the application,
and these can be extended with custom metrics exported

using HTTP APIs, as described earlier. This'dataenablesthe

n. Because the containeris the

application, there is no need to (de)Jmultiplex signals from
multiple applications running inside a physical or virtual
machine. This is simpler, more robust, and permits finer-
grained reporting and control of metrics and logs. Compare
this to having to sshinto a machine to run top. Thoughit is
possible for developers to sshinto their containers, they
rarely need to.

o
®
o
o)}
[
wn
]
-
=y
]
[a%
[¢]
3
jny
=
<

-
o
=)
o
)
3
)
=)
=
o
R
=
<

’

of aninstance being managed by the container manager lines
up exactly with the identity of the instance expected by the
application developer, it is easier to build, manage, and debug
applications.

Finally, although so far we have focused on applications
being 1:1 with containers, in reality we use nested containers

acmqueue | january-february 2016 78

Anant Jain

Anant Jain

system evolution

10 0rF 24

,_,.
=y
o)
2
o)
-
®
9)
Q
%
a)
=y
)
o
c
=
®

: a
o
=)
-
=2
®
n
o)
3
®
3
o)
o
=y
S
®

. Borg also allows top-level application
containers to run outside allocs; this has been a source of

much inconvenience, so KUbernetesregularizesthingsand

A common use patternis for a pod to hold an instance
of a complex application. The major part of the application
sits in one of the child containers, and other child containers
run supporting functions such as log rotation or click-

log offloading to a distributed file system. Cofparedto

| l
¢
0

Orchestration is the beginning, not the end

The original Borg system made it possible to run disparate
workloads on shared machines to improve resource
utilization. The rapid evolution of support servicesin

the Borg ecosystem, however, showed that container

acmgqueue | january-february 2016 79

Anant Jain

Anant Jain

Anant Jain

Anant Jain

system evolution

110F 24

management per se was just the beginning of an environment
for developing and managing reliable distributed systems.

These services were built organically to solve problems
that application teams experienced. The successful ones
were picked up, adopted widely, and made other developers’
lives easier. Unfortunately, these tools typically picked
idiosyncratic APIs, conventions (such as file locations), and
depth of Borg integration. An undesired side effect was to
increase the complexity of deploying applications in the Borg
ecosystem.

Kubernetes attempts to avert this increased complexity
by adopting a consistent approach to its APIs. For example,

acmqueue | january-february 2016 80

Anant Jain

Anant Jain

system evolution

12 0F 24

The

(key-value pairs,
see below). The contents of Spec and Status vary by object

type, but their concept does not: Specisused to'describe the

This uniform API provides many benefits. Learning the
systemis simpler: similar information applies to all objects,
and writing generic tools that work across all objects
is simpler, which in turn enables the development of a

consistent user experience. (EaFRING fromBorgiand Omega

thaticanireadilybelextended by itsiisers)A common AP

and object-metadata structure makes that much easier. For
example, the pod APl is usable by people, internal Kubernetes
components, and external automation tools. Tofurther

thesame common basic BUllding BLGEKS. A good example of

this is the separation between the Kubernetes replication

acmqueue | january-february 2016 81

Anant Jain

Anant Jain

Anant Jain

Anant Jain

Anant Jain

Anant Jain

system evolution 13 0 24

controller and its horizontal auto-scaling system. A

. The autoscaler

implementation can focus on demand—and usage—
predictions, and ignore the details of how to implement its
decisions.

Decoupling ensures that multiple related but different
components share a similar look and feel. For example,

Consistency is also achieved through common design
patterns for different Kubernetes components. Thelidea

-it compares a desired state [e.g,, how many pods
should match a label-selector query) against the observed
state (the number of such pods that it can find), and takes
actions to converge the observed and desired states.

acmqueue |january-february 2016 82

Anant Jain

Anant Jain

Anant Jain

Anant Jain

system evolution

14 0F 24

_‘
=
=z
(@)
(¥2]
_‘
o
>
<
)
O

hile developing these systems we have learned
almost as many things not to do as ideas that
are worth doing. We present some of them here
in the hopes that others can focus on making
new mistakes, rather than repeating ours.

All containers running on a Borg machine share the host’s
IP address, so Borg assigns the containers unique port
numbers as part of the scheduling process. A container will
get anew port number when it moves to a new machine
and (sometimes] when it is restarted on the same machine.

acmqueue | january-february 2016 83

Anant Jain

Anant Jain

Anant Jain

Anant Jain

Anant Jain

system evolution

150F 24

Learning from our experiences with Borg, we decided

that Kubernetes would allocate an IP address per pod,

{dentity This makes it much easier to run off-the-shelf
software on Kubernetes: applications are free to use

static well-known ports (e.g., 80 for HTTP traffic), and
existing, familiar tools can be used for things like network
segmentation, bandwidth throttling, and management. All of

the popular cloud platforms provide networking underlays

that enable IP-per-pod; GAlbare metalionecanusean'SDN

I
q

If you allow users to create containers easily, they tend

to create lots of them, and soon need a way to group and
organize them. Borg provides jobs to group identical tasks
(its name for containers). A job is a compact vector of one

or more identical tasks, indexed sequentially from zero. This
provides a lot of power and is simple and straightforward,
but we came toregret its rigidity over time. For example,
when a task dies and has to be restarted on another machine,
the same slot in the task vector has to do double duty: to
identify the new copy and to point to the old one in case

acmqueue |january-february 2016 84

Anant Jain

Anant Jain

Anant Jain

Anant Jain

system evolution

16 oF 24

it needs to be debugged. When tasks in the middle of the
vector exit, the vector ends up with holes. The vector makes
it very hard to support jobs that span multiple clustersin

a layer above Borg. THere/are/alselinsidicus inexpectea

‘ |

takes downadjacent'tasks. Borg also provides no easy way

to add application-relevant metadata to ajob, such as role
(e.g, “frontend”), or rollout status (e.g., “‘canary’], so people
encode this information into job names that they decode
using regular expressions.

In contrast, Kubernetes primarily uses labels to identify
groups of containers. A label is a keylvalue pair that contains
information that helps identify the object. A pod might

indicating that this container is serving as a production

front-end instance. Cabelsicanbedynamicallyadded:

independently. Sets of objects are defined by label selectors
[e.g. stage==production && role==frontend). Sets
canoverlap, and an object can be in multiple sets, so labels
are inherently more flexible than explicit lists of objects

or simple static properties. Because a set is defined by a
dynamic query, a new one can be created at any time. (abel

acmqueue |january-february 2016 85

Anant Jain

Anant Jain

Anant Jain

Anant Jain

Anant Jain

Anant Jain

Anant Jain

system evolution

17 oF 24

selectors are the grouping mechanism in Kubernetes, and
define the scope of all management operations that can span
multiple entities.

Eveninthose circumstances where knowing the identity
of ataskin a set is helpful (e.g., for static role assignment and
work-partitioning or sharding), appropriate per-pod labels
can be used to reproduce the effect of task indexes, though
it is the responsibility of the application (or some other
management system external to Kubernetes] to provide

such labeling. Labels and label selectors provide a general
mechanism that gives the best of both worlds.

Be careful with ownership
In Borg, tasks do not exist independently fromjobs. Creating

ajob creates its tasks; those tasks are forever associated
with that particular job, and deleting the job deletes the

tasks. Thisis convenient, but it has a major drawback:
because there is only one grouping mechanism, it needs
foRandlealltisecases. For example, ajob has to store
parameters that make sense only for service or batch jobs
but not both, and users must develop workarounds when the
job abstraction doesn't handle a use case (e.g., a DaemonSet
that replicates a single pod to all nodes in the cluster).

In Kubernetes, pod-lifecycle management components
such as replication controllers determine which pods
they are responsible for using label selectors, so multiple
controllers might think they have jurisdiction over a single
pod. It is important to prevent such conflicts through
dppropriate’configlration'chidices. But the flexibility of labels

acmqueue |january-february 2016 86

Anant Jain

Anant Jain

Anant Jain

Anant Jain

Anant Jain

Anant Jain

system evolution

key
difference
between

¥J Womega,
and Kubernetes
isintheir API
architectures.

18 oF 24

has compensating advantages—forexample; the' separation
&nd“adopt”containers. Consider a load-balanced service

that uses a label selector to identify the set of pods to send
traffic to. If one of these pods starts misbehaving, that pod
can be quarantined from serving requests by removing

one or more of the labels that cause it to be targeted by
the Kubernetes serviceload balancer. The pod is no longer
serving traffic, but it will remain up and can be debugged in
situ. In the meantime, the replication controller managing
the pods that implements the service automatically creates
areplacement pod for the misbehaving one.

Akey difference between Borg, Omega, and Kubernetes is
{AtheirAPI'architectlres: The Borgmaster is a monolithic

component that knows the semantics of every APl operation.
It contains the cluster management logic such as the state
machines for jobs, tasks, and machines; and it runs the
Paxos-based replicated storage system used to record

the master’s state. In contrast, Omega has no centralized
component except the store, which simply holds passive
state information and enforces optimistic concurrency
control: all logic and semantics are pushed into the clients of
the store, which directly read and write the store contents. In
practice, every Omega component uses the same client-side
library for the store, which does packinglunpacking of data
structures, retries, and enforces semantic consistency.

acmqueue | january-february 2016 87

Anant Jain

Anant Jain

Anant Jain

Anant Jain

system evolution

190 24

I)

services for object validation, defaulting, and versioning. As
in Omega, the client components are decoupled from one
another and can evolve or be replaced independently (which
is especially important in the open-source environment),
but the centralization makes it easy to enforce common
semantics, invariants, and policies.

SOME OPEN, HARD PROBLEMS

ven with years of container-management experience,
we feel there are a number of problems that we still
don’t have good answers for. This section describes

a couple of particularly knotty ones, in the hope of

g fostering discussion and solutions.

Of all the problems we have confronted, the ones over
which the most brainpower, ink, and code have been spilled

are related to managing Eonfigurations=theSetof Vallies

Intruth, we could have devoted this entire article to the
subject and still have had more to say. What follows are a
few highlights.

acmqueue |january-february 2016 88

Anant Jain

Anant Jain

Anant Jain

Anant Jain

system evolution

200F24

container-management system doesn't [yet) do. Over the

history of Borg this has included:

= Boilerplate reduction (e.g., defaulting task-restart policies
appropriate to the workload, such as service or batch jobs).

= Adjusting and validating application parameters and
command-Lline flags.

= |[mplementing workarounds for missing APl abstractions
such as package (image) management.

= Libraries of configuration templates for applications.

= Release-management tools.

= |mage version specification.

| ‘
\ ‘

‘
| 0

The language to represent the data

acmqueue | january-february 2016 89

Anant Jain

Anant Jain

Anant Jain

Anant Jain

system evolution

210F 24

should be a simple, data-only format such as JSON or YAML,
and programmatic modification of this data should be done
in areal programming language, where there are well-
understood semantics, as well as good tooling. Interestingly,
this same separation of computation and data can be seen

in front-end development with frameworks such as Angular
that maintain a crisp separation between the worlds of
markup (data) and JavaScript (computation).

Dependency management
Standing up a service typically also means standing up 8
series of related services [monitoring, storage, Continuous
Integration | Continuous Deployment (CIICD), etc). If an
application has dependencies on other applications,
wouldn't it be nice if those dependencies (and any transitive
dependencies they may have) were automatically
instantiated by the cluster-management system?

To complicate things, instantiating the dependencies is
rarely as simple as just starting a new copy—for example, it
may require registering as a consumer of an existing service

(e.g., Bigtable as a service] and passing authentication,
authorization, and billing information across those transitive

dependencies. AlBSENOEYSTEMINOWEVEHIEPEIres
{Shearlyimpessible: Turning up a new application remains

complicated for the user, making it harder for developers to
build new services, and often results in the most recent best

acmqueue | january-february 2016 90

Anant Jain

Anant Jain

Anant Jain

system evolution

22 0F 24

practices not being followed, which affects the reliability of
the resulting service.

Astandard problem is that it is hard to keep dependency
information up to date if it is provided manually, and at the
same time attempts to determine it automatically (e.g., by
tracing accesses) fail to capture the semantic information
fieededtolnderstandtheresult (Did that access have to

go to thatinstance, or would any instance have sufficed?)

(We do this for compiler imports in our build system.) The

incentive would be enabling the infrastructure to do useful
things in return, such as automatic setup, authentication, and
connectivity.

aiiSEreamIContalneramanagementsySEam \Ve still hope

that Kubernetes might be a platform on which such tools can
be built, but doing so remains an open challenge.

CONCLUSIONS

i decade’s worth of experience building container-
management systems has taught us much, and
we have embedded many of those lessons into
Kubernetes, Google’s most recent container-
management system. Its goals are to build on
the capabilities of containers to provide significant gains

acmqueue |january-february 2016 91

Anant Jain

Anant Jain

Anant Jain

system evolution

23 0F 24

in programmer productivity and ease of both manual and
automated system management. We hope you'll join us in
extending and improving it.

References

1. Bazel: {fast, correct}—choose two; http:libazel.io.

2. Burrows, M. 2006. The Chubby lock service for loosely
coupled distributed systems. Symposium on Operating
System Design and Implementation (OSDI), Seattle, WA.

3. cAdvisor; https:llgithub.coml/googlelcadvisor.

4. Kubernetes; http:/lkubernetes.iol.

5. Metz, C. 2015. Google is 2 billion lines of code—and it's
allin one place. Wired [September); http:llwww.wired.
coml2015/09/google-2-billion-lines-codeand-one-placel.

6. Schwarzkopf, M., Konwinski, A., Abd-el-Malek, M., Wilkes,
J.2013. Omega: flexible, scalable schedulers for large
compute clusters. European Conference on Computer
Systems (EuroSys), Prague, Czech Republic.

7.Verma, A., Pedrosa, L., Korupolu, M. R., Oppenheimer, D,
Tune, E., Wilkes, J. 2015. Large-scale cluster management
at Google with Borg. European Conference on Computer
Systems (EuroSys), Bordeaux, France.

LOVE IT, HATE IT? LET US KNOW feedback@queue.acm.org

Brendan Burns (@brendandburns] is a software engineer
at Google, where he co-founded the Kubernetes project.

He received his Ph.D. from the University of Massachusetts
Amherst in 2007, Prior to working on Kubernetes and cloud,

acmgqueue | january-february 2016 92

http://www.wired.com/2015/09/google-2-billion-lines-codeand-one-place/
http://www.wired.com/2015/09/google-2-billion-lines-codeand-one-place/

system evolution

24 0F 24

he worked on low-latency indexing for Google’s web-search
infrastructure.

Brian Grant is a software engineer at Google. He was
previously a technical lead of Borg and founder of the Omega
project and is now design lead of Kubernetes.

David Oppenheimer is a software engineer at Google and a
tech lead on the Kubernetes project. He received a PhD from
UC Berkeley in 2005 and joined Google in 2007, where he
was a tech lead on the Borg and Omega cluster-management
systems prior to Kubernetes.

Eric Brewer is VP Infrastructure at Google and a professor at
UC Berkeley, where he pioneered scalable servers and elastic
infrastructure.

John Wilkes has been working on cluster management and
infrastructure services at Google since 2008. Before that, he
spent time at HP Labs, becoming an HP and ACM Fellow in
2002. He is interested in far too many aspects of distributed
systems, but a recurring theme has been technologies that
allow systems to manage themselves. In his spare time he
continues, stubbornly, trying to learn how to blow glass.
Copyright © 2016 by the ACM. All rights reserved.

acmqueue | january-february 2016 93

