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Abstract

Complexity is the single major difficulty in the successful develop-
ment of large-scale software systems. Following Brooks we distinguish
accidental from essential difficulty, but disagree with his premise that
most complexity remaining in contemporary systems is essential. We
identify common causes of complexity and discuss general approaches
which can be taken to eliminate them where they are accidental in
nature. To make things more concrete we then give an outline for
a potential complexity-minimizing approach based on functional pro-
gramming and Codd’s relational model of data.

1 Introduction

The “software crisis” was first identified in 1968 [NR69, p70] and in the
intervening decades has deepened rather than abated. The biggest problem
in the development and maintenance of large-scale software systems is com-
plexity — large systems are hard to understand. We believe that the major
contributor to this complexity in many systems is the handling of state and
the burden that this adds when trying to analyse and reason about the
system. Other closely related contributors are code volume, and explicit
concern with the flow of control through the system.

The classical ways to approach the difficulty of state include object-
oriented programming which tightly couples state together with related be-
haviour, and functional programming which — in its pure form — eschews
state and side-effects all together. These approaches each suffer from various
(and differing) problems when applied to traditional large-scale systems.

We argue that it is possible to take useful ideas from both and that
— when combined with some ideas from the relational database world —
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this approach offers significant potential for simplifying the construction of
large-scale software systems.

The paper is divided into two halves. In the first half we focus on com-
plexity. In section 2 we look at complexity in general and justify our asser-
tion that it is at the root of the crisis, then we look at how we currently
attempt to understand systems in section 3. In section 4 we look at the
causes of complexity (i.e. things which make understanding difficult) before
discussing the classical approaches to managing these complexity causes in
section 5. In section 6 we define what we mean by “accidental” and “essen-
tial” and then in section 7 we give recommendations for alternative ways of
addressing the causes of complexity — with an emphasis on avoidance of
the problems rather than coping with them.

In the second half of the paper we consider in more detail a possible
approach that follows our recommended strategy. We start with a review
of the relational model in section 8 and give an overview of the potential
approach in section 9. In section 10 we give a brief example of how the
approach might be used.

Finally we contrast our approach with others in section 11 and then give
conclusions in section 12.

2 Complexity

In his classic paper — “No Silver Bullet” Brooks[Bro86] identified four prop-
erties of software systems which make building software hard: Complexity,
Conformity, Changeability and Invisibility. Of these we believe that Com-
plexity is the only significant one — the others can either be classified as
forms of complexity, or be seen as problematic solely because of the com-
plexity in the system.

Complexity is the root cause of the vast majority of problems with soft-
ware today. Unreliability, late delivery, lack of security — often even poor
performance in large-scale systems can all be seen as deriving ultimately
from unmanageable complexity. The primary status of complexity as the
major cause of these other problems comes simply from the fact that being
able to understand a system is a prerequisite for avoiding all of them, and
of course it is this which complexity destroys.

The relevance of complexity is widely recognised. As Dijkstra said [Dij97,
EWD1243]:

“...we have to keep it crisp, disentangled, and simple if we refuse
to be crushed by the complexities of our own making...”
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. . . and the Economist devoted a whole article to software complexity
[Eco04] — noting that by some estimates software problems cost the Amer-
ican economy $59 billion annually.

Being able to think and reason about our systems (particularly the ef-
fects of changes to those systems) is of crucial importance. The dangers of
complexity and the importance of simplicity in this regard have also been a
popular topic in ACM Turing award lectures. In his 1990 lecture Corbato
said [Cor91]:

“The general problem with ambitious systems is complexity.”,
“...it is important to emphasize the value of simplicity and ele-
gance, for complexity has a way of compounding difficulties”

In 1977 Backus [Bac78] talked about the “complexities and weaknesses”
of traditional languages and noted:

“there is a desperate need for a powerful methodology to help us
think about programs. ... conventional languages create unnec-
essary confusion in the way we think about programs”

Finally, in his Turing award speech in 1980 Hoare [Hoa81] observed:

“...there is one quality that cannot be purchased... — and that
is reliability. The price of reliability is the pursuit of the utmost
simplicity”

and

“I conclude that there are two ways of constructing a software
design: One way is to make it so simple that there are obviously
no deficiencies and the other way is to make it so complicated
that there are no obvious deficiencies. The first method is far
more difficult.”

This is the unfortunate truth:

Simplicity is Hard

. . . but the purpose of this paper is to give some cause for optimism.
One final point is that the type of complexity we are discussing in this

paper is that which makes large systems hard to understand. It is this
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that causes us to expend huge resources in creating and maintaining such
systems. This type of complexity has nothing to do with complexity theory
— the branch of computer science which studies the resources consumed by
a machine executing a program. The two are completely unrelated — it is
a straightforward matter to write a small program in a few lines which is
incredibly simple (in our sense) and yet is of the highest complexity class
(in the complexity theory sense). From this point on we shall only discuss
complexity of the first kind.

We shall look at what we consider to be the major common causes of
complexity (things which make understanding difficult) after first discussing
exactly how we normally attempt to understand systems.

3 Approaches to Understanding

We argued above that the danger of complexity came from its impact on our
attempts to understand a system. Because of this, it is helpful to consider
the mechanisms that are commonly used to try to understand systems. We
can then later consider the impact that potential causes of complexity have
on these approaches. There are two widely-used approaches to understand-
ing systems (or components of systems):

Testing This is attempting to understand a system from the outside — as
a “black box”. Conclusions about the system are drawn on the basis
of observations about how it behaves in certain specific situations.
Testing may be performed either by human or by machine. The former
is more common for whole-system testing, the latter more common for
individual component testing.

Informal Reasoning This is attempting to understand the system by ex-
amining it from the inside. The hope is that by using the extra infor-
mation available, a more accurate understanding can be gained.

Of the two informal reasoning is the most important by far. This is
because — as we shall see below — there are inherent limits to what can
be achieved by testing, and because informal reasoning (by virtue of being
an inherent part of the development process) is always used. The other
justification is that improvements in informal reasoning will lead to less
errors being created whilst all that improvements in testing can do is to lead
to more errors being detected. As Dijkstra said in his Turing award speech
[Dij72, EWD340]:
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“Those who want really reliable software will discover that they
must find means of avoiding the majority of bugs to start with.”

and as O’Keefe (who also stressed the importance of “understanding your
problem” and that “Elegance is not optional”) said [O’K90]:

“Our response to mistakes should be to look for ways that we
can avoid making them, not to blame the nature of things.”

The key problem with testing is that a test (of any kind) that uses one
particular set of inputs tells you nothing at all about the behaviour of the
system or component when it is given a different set of inputs. The huge
number of different possible inputs usually rules out the possibility of testing
them all, hence the unavoidable concern with testing will always be — have
you performed the right tests?. The only certain answer you will ever get
to this question is an answer in the negative — when the system breaks.
Again, as Dijkstra observed [Dij71, EWD303]:

“testing is hopelessly inadequate....(it) can be used very effec-
tively to show the presence of bugs but never to show their ab-
sence.”

We agree with Dijkstra. Rely on testing at your peril.
This is not to say that testing has no use. The bottom line is that all

ways of attempting to understand a system have their limitations (and this
includes both informal reasoning — which is limited in scope, imprecise and
hence prone to error — as well as formal reasoning — which is dependent
upon the accuracy of a specification). Because of these limitations it may
often be prudent to employ both testing and reasoning together.

It is precisely because of the limitations of all these approaches that
simplicity is vital. When considered next to testing and reasoning, simplicity
is more important than either. Given a stark choice between investment
in testing and investment in simplicity, the latter may often be the better
choice because it will facilitate all future attempts to understand the system
— attempts of any kind.

4 Causes of Complexity

In any non-trivial system there is some complexity inherent in the prob-
lem that needs to be solved. In real large systems however, we regularly
encounter complexity whose status as “inherent in the problem” is open to
some doubt. We now consider some of these causes of complexity.
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4.1 Complexity caused by State

Anyone who has ever telephoned a support desk for a software system and
been told to “try it again”, or “reload the document”, or “restart the pro-
gram”, or “reboot your computer” or “re-install the program” or even “re-
install the operating system and then the program” has direct experience of
the problems that state1 causes for writing reliable, understandable software.

The reason these quotes will sound familiar to many people is that they
are often suggested because they are often successful in resolving the prob-
lem. The reason that they are often successful in resolving the problem is
that many systems have errors in their handling of state. The reason that
many of these errors exist is that the presence of state makes programs hard
to understand. It makes them complex.

When it comes to state, we are in broad agreement with Brooks’ senti-
ment when he says [Bro86]:

“From the complexity comes the difficulty of enumerating, much
less understanding, all the possible states of the program, and
from that comes the unreliability”

— we agree with this, but believe that it is the presence of many possible
states which gives rise to the complexity in the first place, and:

“computers. . . have very large numbers of states. This makes
conceiving, describing, and testing them hard. Software systems
have orders-of-magnitude more states than computers do.”

4.1.1 Impact of State on Testing

The severity of the impact of state on testing noted by Brooks is hard to
over-emphasise. State affects all types of testing — from system-level testing
(where the tester will be at the mercy of the same problems as the hapless
user just mentioned) through to component-level or unit testing. The key
problem is that a test (of any kind) on a system or component that is in one
particular state tells you nothing at all about the behaviour of that system
or component when it happens to be in another state.

The common approach to testing a stateful system (either at the compo-
nent or system levels) is to start it up such that it is in some kind of “clean”
or “initial” (albeit mostly hidden) state, perform the desired tests using the

1By “state” we mean mutable state specifically — i.e. excluding things like (immutable)
single-assignment variables which are provided by logic programming languages for exam-
ple
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test inputs and then rely upon the (often in the case of bugs ill-founded)
assumption that the system would perform the same way — regardless of
its hidden internal state — every time the test is run with those inputs.

In essence, this approach is simply sweeping the problem of state under
the carpet. The reasons that this is done are firstly because it is often
possible to get away with this approach and more crucially because there
isn’t really any alternative when you’re testing a stateful system with a
complicated internal hidden state.

The difficulty of course is that it’s not always possible to “get away with
it” — if some sequence of events (inputs) can cause the system to “get into
a bad state” (specifically an internal hidden state which was different from
the one in which the test was performed) then things can and do go wrong.
This is what is happening to the hypothetical support-desk caller discussed
at the beginning of this section. The proposed remedies are all attempts to
force the system back into a “good internal state”.

This problem (that a test in one state tells you nothing at all about the
system in a different state) is a direct parallel to one of the fundamental
problems with testing discussed above — namely that testing for one set of
inputs tells you nothing at all about the behaviour with a different set of
inputs. In fact the problem caused by state is typically worse — particularly
when testing large chunks of a system — simply because even though the
number of possible inputs may be very large, the number of possible states
the system can be in is often even larger.

These two similar problems — one intrinsic to testing, the other coming
from state — combine together horribly. Each introduces a huge amount of
uncertainty, and we are left with very little about which we can be certain
if the system/component under scrutiny is of a stateful nature.

4.1.2 Impact of State on Informal Reasoning

In addition to causing problems for understanding a system from the out-
side, state also hinders the developer who must attempt to reason (most
commonly on an informal basis) about the expected behaviour of the sys-
tem “from the inside”.

The mental processes which are used to do this informal reasoning often
revolve around a case-by-case mental simulation of behaviour: “if this vari-
able is in this state, then this will happen — which is correct — otherwise
that will happen — which is also correct”. As the number of states — and
hence the number of possible scenarios that must be considered — grows,
the effectiveness of this mental approach buckles almost as quickly as test-
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ing (it does achieve some advantage through abstraction over sets of similar
values which can be seen to be treated identically).

One of the issues (that affects both testing and reasoning) is the ex-
ponential rate at which the number of possible states grows — for every
single bit of state that we add we double the total number of possible states.
Another issue — which is a particular problem for informal reasoning — is
contamination.

Consider a system to be made up of procedures, some of which are
stateful and others which aren’t. We have already discussed the difficulties
of understanding the bits which are stateful, but what we would hope is
that the procedures which aren’t themselves stateful would be more easy
to comprehend. Alas, this is largely not the case. If the procedure in
question (which is itself stateless) makes use of any other procedure which
is stateful — even indirectly — then all bets are off, our procedure becomes
contaminated and we can only understand it in the context of state. If we
try to do anything else we will again run the risk of all the classic state-
derived problems discussed above. As has been said, the problem with state
is that “when you let the nose of the camel into the tent, the rest of him
tends to follow”.

As a result of all the above reasons it is our belief that the single biggest
remaining cause of complexity in most contemporary large systems is state,
and the more we can do to limit and manage state, the better.

4.2 Complexity caused by Control

Control is basically about the order in which things happen.
The problem with control is that very often we do not want to have to

be concerned with this. Obviously — given that we want to construct a
real system in which things will actually happen — at some point order is
going to be relevant to someone, but there are significant risks in concerning
ourselves with this issue unnecessarily.

Most traditional programming languages do force a concern with order-
ing — most often the ordering in which things will happen is controlled by
the order in which the statements of the programming language are written
in the textual form of the program. This order is then modified by explicit
branching instructions (possibly with conditions attached), and subroutines
are normally provided which will be invoked in an implicit stack.

Of course a variety of evaluation orders is possible, but there is little
variation in this regard amongst widespread languages.

The difficulty is that when control is an implicit part of the language (as
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it almost always is), then every single piece of program must be understood
in that context — even when (as is often the case) the programmer may
wish to say nothing about this. When a programmer is forced (through use
of a language with implicit control flow) to specify the control, he or she is
being forced to specify an aspect of how the system should work rather than
simply what is desired. Effectively they are being forced to over-specify the
problem. Consider the simple pseudo-code below:

a := b + 3
c := d + 2
e := f * 4

In this case it is clear that the programmer has no concern at all with the
order in which (i.e. how) these things eventually happen. The programmer
is only interested in specifying a relationship between certain values, but
has been forced to say more than this by choosing an arbitrary control flow.
Often in cases such as this a compiler may go to lengths to establish that
such a requirement (ordering) — which the programmer has been forced to
make because of the semantics of the language — can be safely ignored.

In simple cases like the above the issue is often given little consideration,
but it is important to realise that two completely unnecessary things are
happening — first an artificial ordering is being imposed, and then further
work is done to remove it.

This seemingly innocuous occurrence can actually significantly compli-
cate the process of informal reasoning. This is because the person reading
the code above must effectively duplicate the work of the hypothetical com-
piler — they must (by virtue of the definition of the language semantics)
start with the assumption that the ordering specified is significant, and then
by further inspection determine that it is not (in cases less trivial than the
one above determining this can become very difficult). The problem here
is that mistakes in this determination can lead to the introduction of very
subtle and hard-to-find bugs.

It is important to note that the problem is not in the text of the program
above — after all that does have to be written down in some order — it
is solely in the semantics of the hypothetical imperative language we have
assumed. It is possible to consider the exact same program text as being
a valid program in a language whose semantics did not define a run-time
sequencing based upon textual ordering within the program2.

2Indeed early versions of the Oz language (with implicit concurrency at the statement
level) were somewhat of this kind [vRH04, p809].
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Having considered the impact of control on informal reasoning, we now
look at a second control-related problem, concurrency, which affects testing
as well.

Like basic control such as branching, but as opposed to sequencing, con-
currency is normally specified explicitly in most languages. The most com-
mon model is “shared-state concurrency” in which specification for explicit
synchronization is provided. The impacts that this has for informal rea-
soning are well known, and the difficulty comes from adding further to the
number of scenarios that must mentally be considered as the program is
read. (In this respect the problem is similar to that of state which also adds
to the number of scenarios for mental consideration as noted above).

Concurrency also affects testing, for in this case, we can no longer even
be assured of result consistency when repeating tests on a system — even
if we somehow ensure a consistent starting state. Running a test in the
presence of concurrency with a known initial state and set of inputs tells
you nothing at all about what will happen the next time you run that very
same test with the very same inputs and the very same starting state. . . and
things can’t really get any worse than that.

4.3 Complexity caused by Code Volume

The final cause of complexity that we want to examine in any detail is sheer
code volume.

This cause is basically in many ways a secondary effect — much code
is simply concerned with managing state or specifying control. Because of
this we shall often not mention code volume explicitly. It is however worth
brief independent attention for at least two reasons — firstly because it is
the easiest form of complexity to measure, and secondly because it interacts
badly with the other causes of complexity and this is important to consider.

Brooks noted [Bro86]:

“Many of the classic problems of developing software products
derive from this essential complexity and its nonlinear increase
with size”

We basically agree that in most current systems this is true (we disagree with
the word “essential” as already noted) — i.e. in most systems complexity
definitely does exhibit nonlinear increase with size (of the code). This non-
linearity in turn means that it’s vital to reduce the amount of code to an
absolute minimum.
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We also want to draw attention to one of Dijkstra’s [Dij72, EWD340]
thoughts on this subject:

“It has been suggested that there is some kind of law of nature
telling us that the amount of intellectual effort needed grows
with the square of program length. But, thank goodness, no one
has been able to prove this law. And this is because it need not
be true. . . . I tend to the assumption — up till now not disproved
by experience — that by suitable application of our powers of
abstraction, the intellectual effort needed to conceive or to un-
derstand a program need not grow more than proportional to
program length.”

We agree with this — it is the reason for our “in most current systems”
caveat above. We believe that — with the effective management of the
two major complexity causes which we have discussed, state and control —
it becomes far less clear that complexity increases with code volume in a
non-linear way.

4.4 Other causes of complexity

Finally there are other causes, for example: duplicated code, code which
is never actually used (“dead code”), unnecessary abstraction3, missed
abstraction, poor modularity, poor documentation. . .

All of these other causes come down to the following three (inter-related)
principles:

Complexity breeds complexity There are a whole set of secondary causes
of complexity. This covers all complexity introduced as a result of not
being able to clearly understand a system. Duplication is a prime ex-
ample of this — if (due to state, control or code volume) it is not clear
that functionality already exists, or it is too complex to understand
whether what exists does exactly what is required, there will be a
strong tendency to duplicate. This is particularly true in the presence
of time pressures.

Simplicity is Hard This was noted above — significant effort can be re-
quired to achieve simplicity. The first solution is often not the most
simple, particularly if there is existing complexity, or time pressure.
Simplicity can only be attained if it is recognised, sought and prized.

3Particularly unnecessary data abstraction. We examine an argument that this is
actually most data abstraction in section 9.2.4.
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Power corrupts What we mean by this is that, in the absence of language-
enforced guarantees (i.e. restrictions on the power of the language)
mistakes (and abuses) will happen. This is the reason that garbage
collection is good — the power of manual memory management is
removed. Exactly the same principle applies to state — another kind
of power. In this case it means that we need to be very wary of any
language that even permits state, regardless of how much it discourages
its use (obvious examples are ML and Scheme). The bottom line is
that the more powerful a language (i.e. the more that is possible within
the language), the harder it is to understand systems constructed in
it.

Some of these causes are of a human-nature, others due to environmental
issues, but all can — we believe — be greatly alleviated by focusing on
effective management of the complexity causes discussed in sections 4.1–4.3.

5 Classical approaches to managing complexity

The different classical approaches to managing complexity can perhaps best
be understood by looking at how programming languages of each of the three
major styles (imperative, functional, logic) approach the issue. (We take
object-oriented languages as a commonly used example of the imperative
style).

5.1 Object-Orientation

Object-orientation — whilst being a very broadly applied term (encom-
passing everything from Java-style class-based to Self-style prototype-based
languages, from single-dispatch to CLOS-style multiple dispatch languages,
and from traditional passive objects to the active / actor styles) — is essen-
tially an imperative approach to programming. It has evolved as the domi-
nant method of general software development for traditional (von-Neumann)
computers, and many of its characteristics spring from a desire to facilitate
von-Neumann style (i.e. state-based) computation.

5.1.1 State

In most forms of object-oriented programming (OOP) an object is seen as
consisting of some state together with a set of procedures for accessing and
manipulating that state.
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This is essentially similar to the (earlier) idea of an abstract data type
(ADT) and is one of the primary strengths of the OOP approach when
compared with less structured imperative styles. In the OOP context this
is referred to as the idea of encapsulation, and it allows the programmer to
enforce integrity constraints over an object’s state by regulating access to
that state through the access procedures (“methods”).

One problem with this is that, if several of the access procedures ac-
cess or manipulate the same bit of state, then there may be several places
where a given constraint must be enforced (these different access procedures
may or may not be within the same file depending on the specific language
and whether features, such as inheritance, are in use). Another major prob-
lem4 is that encapsulation-based integrity constraint enforcement is strongly
biased toward single-object constraints and it is awkward to enforce more
complicated constraints involving multiple objects with this approach (for
one thing it becomes unclear where such multiple-object constraints should
reside).

Identity and State

There is one other intrinsic aspect of OOP which is intimately bound up
with the issue of state, and that is the concept of object identity.

In OOP, each object is seen as being a uniquely identifiable entity re-
gardless of its attributes. This is known as intensional identity (in contrast
with extensional identity in which things are considered the same if their
attributes are the same). As Baker observed [Bak93]:

In a sense, object identity can be considered to be a rejection of
the “relational algebra” view of the world in which two objects
can only be distinguished through differing attributes.

Object identity does make sense when objects are used to provide a
(mutable) stateful abstraction — because two distinct stateful objects can
be mutated to contain different state even if their attributes (the contained
state) happen initially to be the same.

However, in other situations where mutability is not required (such as —
say — the need to represent a simple numeric value), the OOP approach is
forced to adopt techniques such as the creation of “Value Objects”, and an

4this particular problem doesn’t really apply to object-oriented languages (such as
CLOS) which are based upon generic functions — but they don’t have the same concept
of encapsulation.
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attempt is made to de-emphasise the original intensional concept of object
identity and re-introduce extensional identity. In these cases it is common
to start using custom access procedures (methods) to determine whether
two objects are equivalent in some other, domain-specific sense. (One risk
— aside from the extra code volume required to support this — is that
there can no longer be any guarantee that such domain-specific equivalence
concepts conform to the standard idea of an equivalence relation — for
example there is not necessarily any guarantee of transitivity).

The intrinsic concept of object identity stems directly from the use of
state, and is (being part of the paradigm itself) unavoidable. This additional
concept of identity adds complexity to the task of reasoning about systems
developed in the OOP style (it is necessary to switch mentally between the
two equivalence concepts — serious errors can result from confusion between
the two).

State in OOP

The bottom line is that all forms of OOP rely on state (contained within
objects) and in general all behaviour is affected by this state. As a result
of this, OOP suffers directly from the problems associated with state de-
scribed above, and as such we believe that it does not provide an adequate
foundation for avoiding complexity.

5.1.2 Control

Most OOP languages offer standard sequential control flow, and many offer
explicit classical “shared-state concurrency” mechanisms together with all
the standard complexity problems that these can cause. One slight variation
is that actor-style languages use the “message-passing” model of concurrency
— they associate threads of control with individual objects and messages
are passed between these. This can lead to easier informal reasoning in some
cases, but the use of actor-style languages is not widespread.

5.1.3 Summary — OOP

Conventional imperative and object-oriented programs suffer greatly from
both state-derived and control-derived complexity.
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5.2 Functional Programming

Whilst OOP developed out of a desire to offer improved ways of managing
and dealing with the classic stateful von-Neumann architecture, functional
programming has its roots in the completely stateless lambda calculus of
Church (we are ignoring the even simpler functional systems based on com-
binatory logic). The untyped lambda calculus is known to be equivalent
in power to the standard stateful abstraction of computation — the Turing
machine.

5.2.1 State

Modern functional programming languages are often classified as ‘pure’ —
those such as Haskell[PJ+03] which shun state and side-effects completely,
and ‘impure’ — those such as ML which, whilst advocating the avoidance of
state and side-effects in general, do permit their use. Where not explicitly
mentioned we shall generally be considering functional programming in its
pure form.

The primary strength of functional programming is that by avoiding
state (and side-effects) the entire system gains the property of referential
transparency — which implies that when supplied with a given set of argu-
ments a function will always return exactly the same result (speaking loosely
we could say that it will always behave in the same way). Everything which
can possibly affect the result in any way is always immediately visible in the
actual parameters.

It is this cast iron guarantee of referential transparency that obliterates
one of the two crucial weaknesses of testing as discussed above. As a re-
sult, even though the other weakness of testing remains (testing for one set
of inputs says nothing at all about behaviour with another set of inputs),
testing does become far more effective if a system has been developed in a
functional style.

By avoiding state functional programming also avoids all of the other
state-related weaknesses discussed above, so — for example — informal
reasoning also becomes much more effective.

5.2.2 Control

Most functional languages specify implicit (left-to-right) sequencing (of cal-
culation of function arguments) and hence they face many of the same issues
mentioned above. Functional languages do derive one slight benefit when
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it comes to control because they encourage a more abstract use of control
using functionals (such as fold / map) rather than explicit looping.

There are also concurrent versions of many functional languages, and
the fact that state is generally avoided can give benefits in this area (for
example in a pure functional language it will always be safe to evaluate all
arguments to a function in parallel).

5.2.3 Kinds of State

In most of this paper when we refer to “state” what we really mean is
mutable state.

In languages which do not support (or discourage) mutable state it is
common to achieve somewhat similar effects by means of passing extra pa-
rameters to procedures (functions). Consider a procedure which performs
some internal stateful computation and returns a result — perhaps the pro-
cedure implements a counter and returns an incremented value each time it
is called:

procedure int getNextCounter()
// ’counter’ is declared and initialized elsewhere in the code
counter := counter + 1
return counter

The way that this is typically implemented in a basic functional pro-
gramming language is to replace the stateful procedure which took no ar-
guments and returned one result with a function which takes one argument
and returns a pair of values as a result.

function (int,int) getNextCounter(int oldCounter)
let int result = oldCounter + 1
let int newCounter = oldCounter + 1
return (newCounter, result)

There is then an obligation upon the caller of the function to make
sure that the next time the getNextCounter function gets called it is sup-
plied with the newCounter returned from the previous invocation.Effectively
what is happening is that the mutable state that was hidden inside the
getNextCounter procedure is replaced by an extra parameter on both the
input and output of the getNextCounter function. This extra parameter is
not mutable in any way (the entity which is referred to by oldCounter is a
different value each time the function is called).
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As we have discussed, the functional version of this program is refer-
entially transparent, and the imperative version is not (hence the caller of
the getNextCounter procedure has no idea what may influence the result
he gets — it could in principle be dependent upon many, many different
hidden mutable variables — but the caller of the getNextCounter function
can instantly see exactly that the result can depend only on the single value
supplied to the function).

Despite this, the fact is that we are using functional values to simulate
state. There is in principle nothing to stop functional programs from pass-
ing a single extra parameter into and out of every single function in the
entire system. If this extra parameter were a collection (compound value)
of some kind then it could be used to simulate an arbitrarily large set of
mutable variables. In effect this approach recreates a single pool of global
variables — hence, even though referential transparency is maintained, ease
of reasoning is lost (we still know that each function is dependent only upon
its arguments, but one of them has become so large and contains irrelevant
values that the benefit of this knowledge as an aid to understanding is al-
most nothing). This is however an extreme example and does not detract
from the general power of the functional approach.

It is worth noting in passing that — even though it would be no substi-
tute for a guarantee of referential transparency — there is no reason why
the functional style of programming cannot be adopted in stateful languages
(i.e. imperative as well as impure functional ones). More generally, we would
argue that — whatever the language being used — there are large benefits
to be had from avoiding hidden, implicit, mutable state.

5.2.4 State and Modularity

It is sometimes argued (e.g. [vRH04, p315]) that state is important because
it permits a particular kind of modularity. This is certainly true. Working
within a stateful framework it is possible to add state to any component
without adjusting the components which invoke it. Working within a func-
tional framework the same effect can only be achieved by adjusting every
single component that invokes it to carry the additional information around
(as with the getNextCounter function above).

There is a fundamental trade off between the two approaches. In the
functional approach (when trying to achieve state-like results) you are forced
to make changes to every part of the program that could be affected (adding
the relevant extra parameter), in the stateful you are not.

But what this means is that in a functional program you can always tell
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exactly what will control the outcome of a procedure (i.e. function) simply by
looking at the arguments supplied where it is invoked. In a stateful program
this property (again a consequence of referential transparency) is completely
destroyed, you can never tell what will control the outcome, and potentially
have to look at every single piece of code in the entire system to determine
this information.

The trade-off is between complexity (with the ability to take a shortcut
when making some specific types of change) and simplicity (with huge im-
provements in both testing and reasoning). As with the discipline of (static)
typing, it is trading a one-off up-front cost for continuing future gains and
safety (“one-off” because each piece of code is written once but is read,
reasoned about and tested on a continuing basis).

A further problem with the modularity argument is that some examples
— such as the use of procedure (function) invocation counts for debugging /
performance-tuning purposes — seem to be better addressed within the sup-
porting infrastructure / language, rather than within the system itself (we
prefer to advocate a clear separation between such administrative/diagnostic
information and the core logic of the system).

Still, the fact remains that such arguments have been insufficient to
result in widespread adoption of functional programming. We must therefore
conclude that the main weakness of functional programming is the flip side
of its main strength — namely that problems arise when (as is often the
case) the system to be built must maintain state of some kind.

The question inevitably arises of whether we can find some way to “have
our cake and eat it”. One potential approach is the elegant system of mon-
ads used by Haskell [Wad95]. This does basically allow you to avoid the
problem described above, but it can very easily be abused to create a state-
ful, side-effecting sub-language (and hence re-introduce all the problems we
are seeking to avoid) inside Haskell — albeit one that is marked by its type.
Again, despite their huge strengths, monads have as yet been insufficient to
give rise to widespread adoption of functional techniques.

5.2.5 Summary — Functional Programming

Functional programming goes a long way towards avoiding the problems
of state-derived complexity. This has very significant benefits for testing
(avoiding what is normally one of testing’s biggest weaknesses) as well as
for reasoning.
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5.3 Logic Programming

Together with functional programming, logic programming is considered to
be a declarative style of programming because the emphasis is on specifying
what needs to be done rather than exactly how to do it. Also as with
functional programming — and in contrast with OOP — its principles and
the way of thinking encouraged do not derive from the stateful von-Neumann
architecture.

Pure logic programming is the approach of doing nothing more than
making statements about the problem (and desired solutions). This is done
by stating a set of axioms which describe the problem and the attributes
required of something for it to be considered a solution. The ideal of logic
programming is that there should be an infrastructure which can take the
raw axioms and use them to find or check solutions. All solutions are formal
logical consequences of the axioms supplied, and “running” the system is
equivalent to the construction of a formal proof of each solution.

The seminal “logic programming” language was Prolog. Prolog is best
seen as a pure logical core (pure Prolog) with various extra-logical5 exten-
sions. Pure Prolog is close to the ideals of logic programming, but there
are important differences. Every pure Prolog program can be “read” in two
ways — either as a pure set of logical axioms (i.e. assertions about the prob-
lem domain — this is the pure logic programming reading), or operationally
— as a sequence of commands which are applied (in a particular order) to
determine whether a goal can be deduced (from the axioms). This second
reading corresponds to the actual way that pure Prolog will make use of the
axioms when it tries to prove goals. It is worth noting that a single Prolog
program can be both correct when read in the first way, and incorrect (for
example due to non-termination) when read in the second.

It is for this reason that Prolog falls short of the ideals of logic pro-
gramming. Specifically it is necessary to be concerned with the operational
interpretation of the program whilst writing the axioms.

5.3.1 State

Pure logic programming makes no use of mutable state, and for this reason
profits from the same advantages in understandability that accrue to pure
functional programming. Many languages based on the paradigm do how-
ever provide some stateful mechanisms. In the extra-logical part of Prolog

5We are using the term here to cover everything apart from the pure core of Prolog —
for example we include what are sometimes referred to as the meta-logical features
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for example there are facilities for adjusting the program itself by adding
new axioms for example. Other languages such as Oz (which has its roots
in logic programming but has been extended to become “multi-paradigm”)
provide mutable state in a traditional way — similar to the way it is provided
by impure functional languages.

All of these approaches to state sacrifice referential transparency and
hence potentially suffer from the same drawbacks as imperative languages
in this regard. The one advantage that all these impure non-von-Neumann
derived languages can claim is that — whilst state is permitted its use is gen-
erally discouraged (which is in stark contrast to the stateful von-Neumann
world). Still, without purity there are no guarantees and all the same state-
related problems can sometimes occur.

5.3.2 Control

In the case of pure Prolog the language specifies both an implicit ordering
for the processing of sub-goals (left to right), and also an implicit ordering of
clause application (top down) — these basically correspond to an operational
commitment to process the program in the same order as it is read textually
(in a depth first manner). This means that some particular ways of writing
down the program can lead to non-termination, and — when combined with
the fact that some extra-logical features of the language permit side-effects
— leads inevitably to the standard difficulty for informal reasoning caused
by control flow. (Note that these reasoning difficulties do not arise in ideal
world of logic programming where there simply is no specified control — as
distinct from in pure Prolog programming where there is).

As for Prolog’s other extra-logical features, some of them further widen
the gap between the language and logic programming in its ideal form. One
example of this is the provision of “cuts” which offer explicit restriction of
control flow. These explicit restrictions are intertwined with the pure logic
component of the system and inevitably have an adverse affect on attempts
to reason about the program (misunderstandings of the effects of cuts are
recognised to be a major source of bugs in Prolog programs [SS94, p190]).

It is worth noting that some more modern languages of the logic program-
ming family offer more flexibility over control than the implicit depth-first
search used by Prolog. One example would be Oz which offers the ability
to program specific control strategies which can then be applied to different
problems as desired. This is a very useful feature because it allows significant
explicit control flexibility to be specified separately from the main program
(i.e. without contaminating it through the addition of control complexity).
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5.3.3 Summary — Logic Programming

One of the most interesting things about logic programming is that (despite
the limitations of some actual logic-based languages) it offers the tantalising
promise of the ability to escape from the complexity problems caused by
control.

6 Accidents and Essence

Brooks defined difficulties of “essence” as those inherent in the nature of
software and classified the rest as “accidents”.

We shall basically use the terms in the same sense — but prefer to start
by considering the complexity of the problem itself before software has even
entered the picture. Hence we define the following two types of complexity:

Essential Complexity is inherent in, and the essence of, the problem (as
seen by the users).

Accidental Complexity is all the rest — complexity with which the de-
velopment team would not have to deal in the ideal world (e.g. com-
plexity arising from performance issues and from suboptimal language
and infrastructure).

Note that the definition of essential is deliberately more strict than com-
mon usage. Specifically when we use the term essential we will mean strictly
essential to the users’ problem (as opposed to — perhaps — essential to some
specific, implemented, system, or even — essential to software in general).
For example — according to the terminology we shall use in this paper —
bits, bytes, transistors, electricity and computers themselves are not in any
way essential (because they have nothing to do with the users’ problem).

Also, the term “accident” is more commonly used with the connotation
of “mishap”. Here (as with Brooks) we use it in the more general sense of
“something non-essential which is present”.

In order to justify these two definitions we start by considering the role
of a software development team — namely to produce (using some given
language and infrastructure) and maintain a software system which serves
the purposes of its users. The complexity in which we are interested is the
complexity involved in this task, and it is this which we seek to classify as
accidental or essential. We hence see essential complexity as “the complexity
with which the team will have to be concerned, even in the ideal world”.
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Note that the “have to” part of this observation is critical — if there
is any possible way that the team could produce a system that the users
will consider correct without having to be concerned with a given type of
complexity then that complexity is not essential.

Given that in the real world not all possible ways are practical, the
implication is that any real development will need to contend with some
accidental complexity. The definition does not seek to deny this — merely
to identify its secondary nature.

Ultimately (as we shall see below in section 7) our definition is equiva-
lent to saying that what is essential to the team is what the users have to
be concerned with. This is because in the ideal world we would be using
language and infrastructure which would let us express the users’ problem
directly without having to express anything else — and this is how we arrive
at the definitions given above.

The argument might be presented that in the ideal world we could
just find infrastructure which already solves the users’ problem completely.
Whilst it is possible to imagine that someone has done the work already,
it is not particularly enlightening — it may be best to consider an implicit
restriction that the hypothetical language and infrastructure be general pur-
pose and domain-neutral.

One implication of this definition is that if the user doesn’t even know
what something is (e.g. a thread pool or a loop counter — to pick two
arbitrary examples) then it cannot possibly be essential by our definition
(we are assuming of course — alas possibly with some optimism — that the
users do in fact know and understand the problem that they want solved).

Brooks asserts [Bro86] (and others such as Booch agree [Boo91]) that
“The complexity of software is an essential property, not an accidental one”.
This would suggest that the majority (at least) of the complexity that we
find in contemporary large systems is of the essential type.

We disagree. Complexity itself is not an inherent (or essential) property
of software (it is perfectly possible to write software which is simple and yet
is still software), and further, much complexity that we do see in existing
software is not essential (to the problem). When it comes to accidental
and essential complexity we firmly believe that the former exists and that
the goal of software engineering must be both to eliminate as much of it as
possible, and to assist with the latter.

Because of this it is vital that we carefully scrutinize accidental com-
plexity. We now attempt to classify occurrences of complexity as either
accidental or essential.
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7 Recommended General Approach

Given that our main recommendations revolve around trying to avoid as
much accidental complexity as possible, we now need to look at which bits
of the complexity must be considered accidental and which essential.

We shall answer this by considering exactly what complexity could not
possibly be avoided even in the ideal world (this is basically how we define
essential). We then follow this up with a look at just how realistic this ideal
world really is before finally giving some recommendations.

7.1 Ideal World

In the ideal world we are not concerned with performance, and our language
and infrastructure provide all the general support we desire. It is against
this background that we are going to examine state and control. Specifically,
we are going to identify state as accidental state if we can omit it in this
ideal world, and the same applies to control.

Even in the ideal world we need to start somewhere, and it seems rea-
sonable to assume that we need to start with a set of informal requirements
from the prospective users.

Our next observation is that because we ultimately need something to
happen — i.e. we are going to need to have our system processed mechan-
ically (on a computer) — we are going to need formality. We are going to
need to derive formal requirements from the informal ones.

So, taken together, this means that even in the ideal world we have:

Informal requirements → Formal requirements

Note that given that we’re aiming for simplicity, it is crucial that the
formalisation be done without adding any accidental aspects at all. Specifi-
cally this means that in the ideal world, formalisation must be done with no
view to execution whatsoever. The sole concern when producing the formal
requirements must be to ensure that there is no relevant6 ambiguity in the
informal requirements (i.e. that it has no omissions).

So, having produced the formalised requirements, what should the next
step be? Given that we are considering the ideal world, it is not unreasonable

6We include the word “relevant” here because in many cases there may be many possible
acceptable solutions — and in such cases the requirements can be ambiguous in that
regard, however that is not considered to be a “relevant” ambiguity, i.e. it does not
correspond to an erroneous omission from the requirements.
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to assume that the next step is simply to execute these formal requirements
directly on our underlying general purpose infrastructure.7

This state of affairs is absolute simplicity — it does not seem conceivable
that we can do any better than this even in an ideal world.

It is interesting to note that effectively what we have just described is in
fact the very essence of declarative programming — i.e. that you need only
specify what you require, not how it must be achieved.

We now consider the implications of this “ideal” approach for the causes
of complexity discussed above.

7.1.1 State in the ideal world

Our main aim for state in the ideal world is to get rid of it — i.e. we are
hoping that most state will turn out to be accidental state.

We start from the perspective of the users’ informal requirements. These
will mention data of various kinds — some of which can give rise to state
— and it is these kinds which we now classify.

All data will either be provided directly to the system (input) or derived.
Additionally, derived data is either immutable (if the data is intended only
for display) or mutable (if explicit reference is made within the requirements
to the ability of users to update that data).

All data mentioned in the users’ informal requirements is of concern to
the users, and is as such essential. The fact that all such data is essential
does not however mean that it will all unavoidably correspond to essential
state. It may well be possible to avoid storing some such data, instead
dealing with it in some other essential aspect of the system (such as the
logic) — this is the case with derived data, as we shall see. In cases where
this is possible the data corresponds to accidental state.

Input Data

Data which is provided directly (input) will have to have been included
in the informal requirements and as such is deemed essential. There are
basically two cases:

• There is (according to the requirements) a possibility that the system
may be required to refer to the data in the future.

• There is no such possibility.
7In the presence of irrelevant ambiguities this will mean that the infrastructure must

choose one of the possibilities, or perhaps even provide all possible solutions
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In the first case, even in the ideal world, the system must retain the data
and as such it corresponds to essential state.

In the second case (which will most often happen when the input is
designed simply to cause some side-effect) the data need not be maintained
at all.

Essential Derived Data — Immutable

Data of this kind can always be re-derived (from the input data — i.e. from
the essential state) whenever required. As a result we do not need to store
it in the ideal world (we just re-derive it when it is required) and it is clearly
accidental state.

Essential Derived Data — Mutable

As with immutable essential derived data, this can be excluded (and the
data re-derived on demand) and hence corresponds to accidental state.

Mutability of derived data makes sense only where the function (logic)
used to derive the data has an inverse (otherwise — given its mutability
— the data cannot be considered derived on an ongoing basis, and it is
effectively input). An inverse often exists where the derived data represents
simple restructurings of the input data. In this situation modifications to the
data can simply be treated identically to the corresponding modifications to
the existing essential state.

Accidental Derived Data

State which is derived but not in the users’ requirements is also accidental
state. Consider the following imperative pseudo-code:

procedure int doCalculation(int y)
// ’subsidaryCalcCache’ is declared and initialized
// elsewhere in the code
if (subsidaryCalcCache.contains(y) == false) {
subsidaryCalcCache.y := slowSubsidaryCalculation(y)

}
return 3 * (4 + subsidaryCalcCache.y)

The above use of state in the doCalculation procedure seems to be
unnecessary (in the ideal world), and hence of the accidental variety. We
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Data Essentiality Data Type Data Mutability Classification
Essential Input - Essential State
Essential Derived Immutable Accidental State
Essential Derived Mutable Accidental State

Accidental Derived - Accidental State

Table 1: Data and State

cannot actually be sure without knowing whether and how the subsidary-
CalcCache is used elsewhere in the program, but for this example we shall
assume that there are no other uses aside from initialization. The above
procedure is thus equivalent to:

procedure int doCalculation(int y)
return 3 * (4 + slowSubsidaryCalculation(y))

It is almost certain that this use of state would not have been part of
the users’ informal requirements. It is also derived. Hence, it is quite clear
that we can eliminate it completely from our ideal world, and that hence it
is accidental.

Summary — State in the ideal world

For our ideal approach to state, we largely follow the example of functional
programming which shows how mutable state can be avoided. We need to
remember though that:

1. even in the ideal world we are going to have some essential state —
as we have just established

2. pure functional programs can effectively simulate accidental state in
the same way that they can simulate essential state (using techniques
such as the one discussed above in section 5.2.3) — we obviously want
to avoid this in the ideal world.

The data type classifications are summarized in Table 1. Wherever the
table shows data as corresponding to accidental state it means that it can
be excluded from the ideal world (by re-deriving the data as required).

The obvious implication of the above is that there are large amounts of
accidental state in typical systems. In fact, it is our belief that the vast
majority of state (as encountered in typical contemporary systems) simply
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isn’t needed (in this ideal world). Because of this, and the huge complexity
which state can cause, the ideal world removes all non-essential state. There
is no other state at all. No caches, no stores of derived calculations of any
kind. One effect of this is that all the state in the system is visible to the
user of (or person testing) the system (because inputs can reasonably be
expected to be visible in ways which internal cached state normally is not).

7.1.2 Control in the ideal world

Whereas we have seen that some state is essential, control generally can be
completely omitted from the ideal world and as such is considered entirely
accidental. It typically won’t be mentioned in the informal requirements
and hence should not appear in the formal requirements (because these are
derived with no view to execution).

What do we mean by this? Clearly if the program is ever to run, some
control will be needed somewhere because things will have to happen in
some order — but this should no more be our concern than the fact that the
chances are some electricity will be needed somewhere. The important thing
is that we (as developers of the system) should not have to worry about the
control flow in the system. Specifically the results of the system should be
independent of the actual control mechanism which is finally used.

These are precisely the lessons which logic programming teaches us, and
because of this we would like to take the lead for our ideal approach to
control from logic programming which shows that control can be separated
completely.

It is worth noting that because typically the informal requirements will
not mention concurrency, that too is normally of an accidental nature. In
an ideal world we can assume that finite (stateless) computations take zero
time8 and as such it is immaterial to a user whether they happen in sequence
or in parallel.

7.1.3 Summary

In the ideal world we have been able to avoid large amounts of complexity
— both state and control. As a result, it is clear that a lot of complexity
is accidental. This gives us hope that it may be possible to significantly
reduce the complexity of real large systems. The question is — how close is
it possible to get to the ideal world in the real one?

8this assumption is generally known as the “synchrony hypothesis”
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7.2 Theoretical and Practical Limitations

The real world is not of course ideal. In this section we examine a few of
the assumptions made in the section 7.1 and see where they break down.

As already noted, our vision of an ideal world is similar in many ways to
the vision of declarative programming that lies behind functional and logic
programming.

Unfortunately we have seen that functional and logic programming ul-
timately had to confront both state and control. We should note that the
reasons for having to confront each are slightly different. State is required
simply because most systems do have some state as part of their true essence.
Control generally is accidental (the users normally are not concerned about
it at all) but the ability to restrict and influence it is often required from a
practical point of view. Additionally practical (e.g. efficiency) concerns will
often dictate the use of some accidental state.

These observations give some indication of where we can expect to en-
counter difficulties.

7.2.1 Formal Specification Languages

First of all, we want to consider two problems (one of a theoretical kind,
the other practical) that arise in connection with the ideal-world formal
requirements.

In that section we discussed the need for formal requirements derived
directly from the informal requirements. We observed that in the ideal
world we would like to be able to execute the formal requirements without
first having to translate them into some other language.

The phrase “formal requirements” is basically synonymous with “for-
mal specification”, so what effectively we’re saying would be ideal are exe-
cutable specifications. Indeed both the declarative programming paradigms
discussed above (functional programming and logic programming) have been
proposed as approaches for executable specifications.

Before we consider the problems with executing them, we want to com-
ment that the way in which the ideal world formal specifications were derived
— directly from the users’ informal requirements — was critical. Formal
specifications can be derived in various other ways (some of which risk the
introduction of accidental complexity), and can be of various different kinds.

Traditionally formal specification has been categorized into two main
camps:

Property-based approaches focus (in a declarative manner) on what is
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required rather than how the requirements should be achieved. These
approaches include the algebraic (equational axiomatic semantics) ap-
proaches such as Larch and OBJ.

Model-based (or State-based) approaches construct a potential model
for the system (often a stateful model) and specify how that model
must behave. These approaches (which include Z and VDM) can hence
be used to specify how a stateful, imperative language solution must
behave to satisfy the requirements. (We discussed the weaknesses of
stateful imperative languages in section 5).

The first problem that we want to discuss in this section is the more
theoretical one. Arguments (which focus more on the model-based ap-
proaches) have been put forward against the concept of executable spec-
ifications [HJ89]. The main objection is that requiring a specification lan-
guage to be executable can directly restrict its expressiveness (for example
when specifying requirements for a variable x it may be desirable to assert
something like ¬∃y|f(y, x) which clearly has no direct operational interpre-
tation).

In response to this objection, we would say firstly that in our experience
a requirement for this kind of expressivity does not seem to be common in
many problem domains. Secondly it would seem sensible that where such
specifications do occur they should be maintained in their natural form
but supplemented with a separate operational component. Indeed in this
situation it would not seem too unreasonable to consider the required oper-
ational component to be accidental in nature (of course the reality is that in
cases like this the boundary between what is accidental and essential, what
is reasonable to hope for in an “ideal” world, becomes less clear). Some
specification languages address this issue by having an executable subset.

Finally, it is the property-based approaches that seem to have the great-
est similarity to what we have in mind when we talk about executable spec-
ifications in the ideal world. It certainly is possible to execute algebraic
specifications — deriving an operational semantics by choosing a direction
for each of the equational axioms.9

In summary, the first problem is that consideration of specification lan-
guages highlights the (theoretically) fuzzy boundary between what is essen-
tial and what is accidental — specifically it challenges the validity of our
definition of essential (which we identified closely with requirements from
the users) by observing that it is possible to specify things which are not

9Care must be taken that the resulting reduction rules are confluent and terminating.
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directly executable. For the reasons given above (and in section 6) we think
that — from the practical point of view — our definition is still viable,
import and justified.

The second problem is of a more practical nature — namely that even
when specifications are directly executable, this can be impractical for effi-
ciency reasons. Our response to this is that whilst it is undoubtedly true,
we believe that it is very important (for understanding and hence for avoid-
ing complexity) not to lose the distinction we have defined between what is
accidental and essential. As a result, this means that we will require some
accidental components as we shall see in section 7.2.3.

7.2.2 Ease of Expression

There is one final practical problem that we want to consider — even though
we believe it is fairly rare in most application domains. In section 7.1.1 we
argued that immutable, derived data would correspond to accidental state
and could be omitted (because the logic of the system could always be used
to derive the data on-demand).

Whilst this is true, there are occasionally situations where the ideal world
approach (of having no accidental state, and using on-demand derivation)
does not give rise to the most natural modelling of the problem.

One possible situation of this kind is for derived data which is dependent
upon both a whole series of user inputs over time, and its own previous
values. In such cases it can be advantageous10 to maintain the accidental
state even in the ideal world.

An example of this would be the derived data representing the position
state of a computer-controlled opponent in an interactive game — it is at all
times derivable by a function of both all prior user movements and the initial
starting positions,11 but this is not the way it is most naturally expressed.

7.2.3 Required Accidental Complexity

We have seen two possible reasons why in practice — even with optimal
language and infrastructure — we may require complexity which strictly is
accidental. These reasons are:

Performance making use of accidental state and control can be required
for efficiency — as we saw in the second problem of section 7.2.1.

10because it can make the logic easier to express — as we shall see in section 7.3.2
11We are implicitly considering time as an additional input.
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Ease of Expression making use of accidental state can be the most nat-
ural way to express logic in some cases — as we saw in section 7.2.2.

Of the two, we believe that performance will be the most common.
It is of course vital to be aware that as soon as we re-introduce this acci-

dental complexity, we are again becoming exposed to the dangers discussed
in sections 4.1 and 4.2. Specifically we can see that if we add in accidental
state which has to be managed explicitly by the logic of the system, then we
become at risk of the possibility of the system entering an inconsistent state
(or “bad state”) due to errors in that explicit logic. This is a very serious
concern, and is one that we address in our recommendations below.

7.3 Recommendations

We believe that — despite the existence of required accidental complexity —
it is possible to retain most of the simplicity of the ideal world (section 7.1)
in the real one. We now look at how this might be achievable.

Our recommendations for dealing with complexity (as exemplified by
both state and control) can be summed up as:

• Avoid

• Separate

Specifically the overriding aim must be to avoid state and control where
they are not absolutely and truly essential.

The recommendation of avoidance is however tempered by the acknowl-
edgement that there will sometimes be complexity that either is truly essen-
tial (section 7.1.1) or, whilst not truly essential, is useful from a practical
point of view (section 7.2.3). Such complexity must be separated out from
the rest of the system — and this gives us our second recommendation.

There is nothing particularly profound in these recommendations, but
they are worth stating because they are emphatically not the way most
software is developed today. It is the fact that current established practice
does not use these as central overriding principles for software development
that leads directly to the complexity that we see everywhere, and as already
argued, it is that complexity which leads to the software crisis12.

In addition to not being profound, the principles behind these recom-
mendations are not really new. In fact, in a classic 1979 paper Kowalski

12There is some limited similarity between our goal of “Separate” and the goal of
separation of concerns as promoted by proponents of Aspect Oriented Programming —
but as we shall see in section 7.3.2, exactly what is meant by separation is critical.
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(co-inventor of Prolog) argued in exactly this direction [Kow79]. The title
of his paper was the equation:

“Algorithm = Logic + Control”

. . . and this separation that he advocated is close to the heart of what
we’re recommending.

7.3.1 Required Accidental Complexity

In section 7.2.3 we noted two possible reasons for requiring accidental com-
plexity (even in the presence of optimal language and infrastructure). We
now consider the most appropriate way of handling each.

Performance

We have seen that there are many serious risks which arise from accidental
complexity — particularly when introduced in an undisciplined manner. To
mitigate these risks we take two defensive measures.

The first is with regard to the risks of explicit management of accidental
state (which we have argued is actually the majority of state). The rec-
ommendation here is that we completely avoid explicit management of the
accidental state — instead we should restrict ourselves to simply declaring
what accidental state should be used, and leave it to a completely separate
infrastructure (on which our system will eventually run) to maintain. This is
reasonable because the infrastructure can make use of the (separate) system
logic which specifies how accidental data must be derived.

By doing this we eliminate any risk of state inconsistency (bugs in the
infrastructure aside of course). Indeed, as we shall see (in section 7.3.2),
from the point of view of the logic of the system, we can effectively forget
that the accidental state even exists. More specific examples of this approach
are given in the second half of this paper.

The other defensive action we take is “Separate”. We examine separa-
tion after first looking at the other possible reason for requiring accidental
complexity.

Ease of Expression

This problem (see section 7.2.2) fundamentally arises when derived (i.e.
accidental) state offers the most natural way to express parts of the logic of
the system.
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Complexity Type Recommendation
Essential Logic Separate

Essential Complexity State Separate
Accidental Useful Complexity State / Control Separate
Accidental Useless Complexity State / Control Avoid

Table 2: Types of complexity within a system

The difficulty then arises that this requirement (to use the accidental
state in a fairly direct manner inside the system logic) clashes with the goal
of separation that we have just discussed. This very separation is critical
when it comes to avoiding complexity, so we do not want to sacrifice it for
this (probably fairly rare) situation.

Instead what we recommend is that, in cases where it really is the only
natural thing to do, we should pretend that the accidental state is really
essential state for the purposes of the separation discussed below. One
straightforward way to do this is to make use of an external component
which observes the derived data in question and creates the illusion of the
user typing that same (derived, accidental) data back in as input data (we
touch on this issue again in section 9.1.4).

7.3.2 Separation and the relationship between the components

In the above we deliberately glossed over exactly what we meant by our sec-
ond recommendation: “Separate”. This is because it actually encompasses
two things.

The first thing that we’re doing is to advocate separating out all com-
plexity of any kind from the pure logic of the system (which — having
nothing to do with either state or control — we’re not really considering
part of the complexity). This could be referred to as the logic / state split
(although of course state is just one aspect of complexity — albeit the main
one).

The second is that we’re further dividing the complexity which we do
retain into accidental and essential.This could be referred to as the accidental
/ essential split. These two splits can more clearly be seen by considering
the Table 2. (N.B. We do not consider there to be any essential control).

The essential bits correspond to the requirements in the ideal world of
section 7.1 — i.e. we are recommending that the formal requirements adopt
the logic / state split.

The top three rows of the table correspond to components which we
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expect to exist in most practical systems (some systems may not actually
require any essential state, but we include it here for generality). i.e. These
are the three things which will need to be specified (in terms of a given
underlying language and infrastructure) by the development team.

“Separate” is basically advocating clean distinction between all three of
these components. It is additionally advocating a split between the state
and control components of the “Useful” Accidental Complexity — but this
distinction is less important than the others.

One implication of this overall structure is that the system (essential +
accidental but useful) should still function completely correctly if the “acci-
dental but useful” bits are removed (leaving only the two essential compo-
nents) — albeit possibly unacceptably slowly. As Kowalski (who — writing
in a Prolog-context — was not really considering any essential state) says:

“The logic component determines the meaning . . . whereas the
control component only affects its efficiency”.

A consequence of separation is that the separately specified components
will each be of a very different nature, and as a result it may be ideal to
use different languages for each. These languages would each be oriented
(i.e. restricted) to their specific goal — there is no sense in having control
specification primitives in a language for specifying state. This notion of
restricting the power of the individual languages is an important one —
the weaker the language, the more simple it is to reason about. This has
something in common with the ideas behind “Domain Specific Languages”
— one exception being that the domains in question are of a fairly abstract
nature and combine to form a general-purpose platform.

The vital importance of separation comes simply from the fact that it is
separation that allows us to “restrict the power” of each of the components
independently. The restricted power of the respective languages with which
each component is expressed facilitates reasoning about them individually.
The very fact that the three are separated from each other facilitates reason-
ing about them as a whole (e.g. you do not have to think about accidental
state at all when you are working on the essential logic of your system13).

Figure 1 shows the same three expected components of a system in a
different way (compare with Table 2). Each box in the diagram corresponds
to some aspect of the system which will need to be specified by the devel-
opment team. Specifically, it will be necessary to specify what the essential

13indeed it should be perfectly possible for different users of the same essential system
to employ different accidental components — each designed for their particular needs
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Figure 1: Recommended Architecture (arrows show static references)

state can be, what must always be logically true, and finally what accidental
use can be made of state and control (typically for performance reasons).

The differing nature of what is specified by each of the components
leads naturally to certain relationships between them, to restrictions on the
ways in which they can or cannot refer to each other. These restrictions
are absolute, and because of this provide a huge aid to understanding the
different components of the system independently.

Essential State This can be seen as the foundation of the system. The
specification of the required state is completely self-contained — it
can make no reference to either of the other parts which must be
specified. One implication of this is that changes to the essential state
specification itself may require changes in both the other specifications,
but changes in either of the other specifications may never require
changes to the specification of essential state.

Essential Logic This is in some ways the “heart” of the system — it ex-
presses what is sometimes termed the “business” logic. This logic
expresses — in terms of the state — what must be true. It does not
say anything about how, when, or why the state might change dy-
namically — indeed it wouldn’t make sense for the logic to be able to
change the state in any way.

Changes to the essential state specification may require changes to
the logic specification, and changes to the logic specification may re-
quire changes to the specification for accidental state and control. The
logic specification will make no reference to any part of the accidental
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specification. Changes in the accidental specification can hence never
require any change to the essential logic.

Accidental State and Control This (by virtue of its accidental nature)
is conceptually the least important part of the system. Changes to
it can never affect the other specifications (because neither of them
make any reference to any part of it), but changes to either of the
others may require changes here.

Together the goals of avoid and separate give us reason to hope that we
may well be able to retain much of the simplicity of the ideal world in the
real one.

7.4 Summary

This first part of the paper has done two main things. It has given arguments
for the overriding danger of complexity, and it has given some hope that
much of the complexity may be avoided or controlled.

The key difference between what we are advocating and existing ap-
proaches (as embodied by the various styles of programming language) is a
high level separation into three components — each specified in a different
language14. It is this separation which allows us to restrict the power of
each individual component, and it is this use of restricted languages which
is vital in making the overall system easier to comprehend (as we argued in
section 4.4 — power corrupts).

Doing this separation when building a system may not be easy, but we
believe that for any large system it will be significantly less difficult than
dealing with the complexity that arises otherwise.

It is hard to overstate the dangers of complexity. If it is not controlled it
spreads. The only way to escape this risk is to place the goals of avoid and
separate at the top of the design objectives for a system. It is not sufficient
simply to pay heed to these two objectives — it is crucial that they be the
overriding consideration. This is because complexity breeds complexity and
one or two early “compromises” can spell complexity disaster in the long
run.

It is worth noting in particular the risks of “designing for performance”.
The dangers of “premature optimisation” are as real as ever — there can
be no comparison between the difficulty of improving the performance of a

14or different subsets of the same language, provided it is possible to forcibly restrict
each component to the relevant subset.
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slow system designed for simplicity and that of removing complexity from a
complex system which was designed to be fast (and quite possibly isn’t even
that because of myriad inefficiencies hiding within its complexity).

In the second half of this paper we shall consider a possible approach
based on these recommendations.

8 The Relational Model

The relational model [Cod70] has — despite its origins — nothing intrinsi-
cally to do with databases. Rather it is an elegant approach to structuring
data, a means for manipulating such data, and a mechanism for maintaining
integrity and consistency of state. These features are applicable to state and
data in any context.

In addition to these three broad areas [Cod79, section 2.1], [Dat04, p109],
a fourth strength of the relational model is its insistence on a clear separation
between the logical and physical layers of the system. This means that
the concerns of designing a logical model (minimizing the complexity) are
addressed separately from the concerns of designing an efficient physical
storage model and mapping between that and the logical model15. This
principle is called data independence and is a crucial part of the relational
model [Cod70, section 1.1].

We see the relational model as having the following four aspects:

Structure the use of relations as the means for representing all data

Manipulation a means to specify derived data

Integrity a means to specify certain inviolable restrictions on the data

Data Independence a clear separation is enforced between the logical
data and its physical representation

We will look briefly at each of these aspects. [Dat04] provides a more
thorough overview of the relational model.

As a final comment, it is widely recognised that SQL (of any version) —
despite its widespread use — is not an accurate reflection of the relational
model [Cod90, p371, Serious flaws in SQL], [Dat04, p xxiv] so the reader is
warned against equating the two.

15Unfortunately most contemporary DBMSs are somewhat limited in the degree of
flexibility permitted by the physical/logical mapping. This has the unhappy result that
physical performance concerns can invade the logical design even though avoiding exactly
this was one of Codd’s most important original goals.
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8.1 Structure

8.1.1 Relations

As mentioned above, relations provide the sole means for structuring data
in the relational model. A relation is best seen as a homogeneous set of
records, each record itself consisting of a heterogeneous set of uniquely named
attributes (this is slightly different from the general mathematical definition
of a relation as a set of tuples whose components are identified by position
rather than name).

Implications of this definition include the fact that — by virtue of being
a set — a relation can contain no duplicates, and it has no ordering. Both of
these restrictions are in contrast with the common usage of the word table
which can obviously contain duplicate rows (and column names), and — by
virtue of being a visual entity on a page — inevitably has both an ordering
of its rows and of its columns.

Relations can be of the following kinds:

Base Relations are those which are stored directly

Derived Relations (also known as Views) are those which are defined in
terms of other relations (base or derived) — see section 8.2

Following Date [Dat04] it is useful to think of a relation as being a
single (albeit compound) value, and to consider any mutable state not as a
“mutable relation” but rather as a variable which at any time can contain
a particular relation value. Date calls these variables relation variables or
relvars, leading to the terms base relvar and derived relvar, and we shall
use this terminology later. (Note however that our definition of relation is
slightly different from his in that — following standard static typing practice
— we do not consider the type to be part of the value).

8.1.2 Structuring benefits of Relations — Access path indepen-
dence

The idea of structuring data using relations is appealing because no subjec-
tive, up-front decisions need to be made about the access paths that will
later be used to query and process the data.

To understand what is meant by access path, let us consider a simple
example. Suppose we are trying to represent information about employees
and the departments in which they work. A system in which choosing the
structure for the data involves setting up “routes” between data instances
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(such as from a particular employee to a particular department) is access
path dependent.

The two main data structuring approaches which preceded the relational
model (the network and hierarchical models) were both access path depen-
dent in this way. For example, in the hierarchical model a subjective choice
would be forced early on as to whether departments would form the top
level (with each department “containing” its employees) or the other way
round (with employees “containing” their departments). The choice made
would impact all future use of the data. If the first alternative was selected,
then users of the data would find it easy to retrieve all employees within a
given department (following the access path), but they would find it harder
to retrieve the department of a given employee (and would have to use some
other technique corresponding to a search of all departments). If the second
alternative was selected then the problem was simply reversed.

The network model alleviated the problem to some degree by allowing
multiple access paths between data instances (so the choice could be made
to provide both an access path from department to employee and an access
path from employee to department). The problem of course is that it is
impossible to predict in advance what all the future required access paths
will be, and because of this there will always be a disparity between:

Primary retrieval requirements which were foreseen, and can be satis-
fied simply by following the provided access paths

Secondary retrieval requirements which were either unforeseen, or at
least not specially supported, and hence can only be satisfied by some
alternative mechanism such as search

The ability of the relational model to avoid access paths completely was
one of the primary reasons for its success over the network and hierarchical
models.

It is also interesting to consider briefly what is involved when taking an
object-oriented (OOP) approach to our example. We can choose between
the following options:

• Give Employee objects a reference to their Department

• Give Department objects a set (or array) of references to their Em-
ployees

• Both of the above
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If we choose the third option, then we at best expose ourselves to extra
work in maintaining the redundant references, and at worst expose ourselves
to bugs.

There are disturbing similarities between the data structuring approaches
of OOP and XML on the one hand and the network and hierarchical models
on the other.

A final advantage of using relations for the structure — in contrast with
approaches such as Chen’s ER-modelling [Che76] — is that no distinction
is made between entities and relationships. (Using such a distinction can be
problematic because whether something is an entity or a relationship can
be a very subjective question).

8.2 Manipulation

Codd introduced two different mechanisms for expressing the manipulation
aspects of the relational model — the relational calculus and the relational
algebra. They are formally equivalent (in that expressions in each can be
converted into equivalent expressions in the other), and we shall only con-
sider the algebra.

The relational algebra (which is now normally considered in a slightly
different form from the one used originally by Codd) consists of the following
eight operations:

Restrict is a unary operation which allows the selection of a subset of the
records in a relation according to some desired criteria

Project is a unary operation which creates a new relation corresponding
to the old relation with various attributes removed from the records

Product is a binary operation corresponding to the cartesian product of
mathematics

Union is a binary operation which creates a relation consisting of all records
in either argument relation

Intersection is a binary operation which creates a relation consisting of all
records in both argument relations

Difference is a binary operation which creates a relation consisting of all
records in the first but not the second argument relation
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Join is a binary operation which constructs all possible records that re-
sult from matching identical attributes of the records of the argument
relations

Divide is a ternary operation which returns all records of the first argument
which occur in the second argument associated with each record of the
third argument

One significant benefit of this manipulation language (aside from its
simplicity) is that it has the property of closure — that all operands and
results are of the same kind (relations) — hence the operations can be
nested in arbitrary ways (indeed this property is inherent in any single-
sorted algebra).

8.3 Integrity

Integrity in the relational model is maintained simply by specifying — in a
purely declarative way — a set of constraints which must hold at all times.

Any infrastructure implementing the relational model must ensure that
these constraints always hold — specifically attempts to modify the state
which would result in violation of the constraints must be either rejected
outright or restricted to operate within the bounds of the constraints.

The most common types of constraint are those identifying candidate or
primary keys and foreign keys. Constraints may in fact be arbitrarily com-
plex, involve multiple relations, and be constructed from either the relational
calculus or the relational algebra.

Finally, many commercially available DBMSs provide imperative mech-
anisms such as triggers for maintaining integrity — such mechanisms suffer
from control-flow concerns (see section 4.2) and are not considered to be
part of the relational model.

8.4 Data Independence

Data independence is the principle of separating the logical model from the
physical storage representation, and was one of the original motivations for
the relational model.

It is interesting to note that the data independence principle is in fact
a very close parallel to the accidental / essential split recommended above
(section 7.3.2). This is one of several reasons that motivate the adoption of
the relational model in Functional Relational Programming (see section 9
below).
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8.5 Extensions

The relational algebra — whilst flexible — is a restrictive language in com-
putational terms (it is not Turing-complete) and is normally augmented in
various ways when used in practice. Common extensions include:

General computation capabilities for example simple arithmetical op-
erations, possibly along with user-defined computations.

Aggregate operators such as MAX, MIN, COUNT, SUM, etc.

Grouping and Summarization capabilities to allow for easy applica-
tion of aggregate operations to relations

Renaming capabilities the ability to generate derived relations by chang-
ing attribute names

9 Functional Relational Programming

The approach of functional relational programming (FRP16) derives its
name from the fact that the essential components of the system (the logic
and the essential state) are based upon functional programming and the
relational model (see Figure 2).

FRP is currently a purely hypothetical17 approach to system architecture
that has not in any way been proven in practice. It is however based firmly
on principles from other areas (the relational model, functional and logic
programming) which have been widely proven.

In FRP all essential state takes the form of relations, and the essen-
tial logic is expressed using relational algebra extended with (pure) user-
defined18 functions.

The primary, overriding goal behind the FRP architecture (and indeed
this whole paper) is of course elimination of complexity.

16Not to be confused with functional reactive programming [EH97] which does in fact
have some similarities to this approach, but has no intrinsic focus on relations or the
relational model

17Aside from token experimental implementations of FRP infrastructures created by
the authors.

18By user-defined we mean specific to this particular FRP system (as opposed to pre-
provided by an underlying infrastructure).
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Figure 2: The components of an FRP system (infrastructure not shown,
arrows show dynamic data flow)

9.1 Architecture

We describe the architecture of an FRP system by first looking at what must
be specified for each of the components when constructing a system in this
manner. Then we look at what infrastructure needs to be available in order
to be able to construct systems in this fashion.

In accordance with the first half of this paper, FRP recommends that the
system be constructed from separate specifications for each of the following
components:

Essential State A Relational definition of the stateful components of the
system

Essential Logic Derived-relation definitions, integrity constraints and (pure)
functions

Accidental State and Control A declarative specification of a set of per-
formance optimizations for the system

Other A specification of the required interfaces to the outside world (user
and system interfaces)

Speaking somewhat loosely, the first two components can be seen as cor-
responding to “State” and “Behaviour” respectively, whilst the third con-
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centrates on “Performance”. In contrast with the object-oriented approach,
FRP emphasises a clear separation of state and behaviour19.

9.1.1 Essential State (“State”)

This component consists solely of a specification of the essential state for
the system in terms of base relvars20 (in FRP all state is stored solely in
terms of relations — there are no exceptions to this). Specifically it is the
names and types of the base relvars that are specified here, not their actual
contents. The contents of the relvars (i.e. the relations themselves) will of
course be crucial when the system is used, but here we are discussing only
the static structure of the system.

In accordance with section 7.1.1, FRP strongly encourages that data be
treated as essential state only21 when it has been input directly by a user.22

9.1.2 Essential Logic (“Behaviour”)

The essential logic comprises both functional and algebraic (relational) parts.
The main (in the sense that it provides the overall structure for the com-
ponent) part is the relational one, and consists of derived-relvar names and
definitions. These definitions consist of applications of the relational algebra
operators to other relvars (both derived relvars and the base relvars which
make up the essential state).

In addition to the relational algebra, the definitions can make use of an
arbitrary set of pure user-defined functions which make up the functional
part of the essential logic.

Finally (in accordance with the standard relational model) the logic spec-
ifies a set of integrity constraints — boolean expressions which must hold at
all times. (These can include everything from simple foreign key constraints
to complicated multiple-relvar requirements making use of user-defined func-
tions). Any attempt to modify the essential state (see section 9.1.4) will
always be subject to these integrity constraints.

Much of the standard theory of relational database design can obviously
be used as a guide for the relational parts of these two essential components.
For example, normalization of the relvars will allow consistent updates (see

19Equally, traditional OOP pays little attention to the accidental / essential split which
was also discussed in section 7.3.2.

20see section 8.1.1 for a definition of this term.
21aside from the ease of expression issue discussed in section 9.1.4.
22Other systems connected electronically are considered equivalent to users inputting

data for these purposes.
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section 9.1.4) to the state to be more easily expressed. Note that — assuming
no integrity constraints have been accidentally omitted — normalization
does not in any way help to preserve the integrity of our relvars — that is
after all what the constraints do, and if the constraints are not violated (and
the infrastructure must always ensure this) then the relvars have integrity
by definition. What is true is that more normalized designs do impose
implicit restrictions, and this can reduce the number of (explicit) integrity
constraints that must be specified.

Having raised the issue of design, it is vital to note that absolutely NO
consideration is paid to performance issues of any kind here. Concepts such
as “denormalization for performance” make absolutely no sense in this con-
text because they contain the implicit assumption that the physical storage
used will closely mirror the relational structure which is being specified here.
This is absolutely not the case (it is only the accidental state and control
component — see below — which is concerned with efficiency of storage
structures).

9.1.3 Accidental State and Control (“Performance”)

This component fundamentally consists of a series of isolated (in the sense
that they cannot refer to each other in any way) performance “hints”. These
hints — which should be declarative in nature — are intended to provide
guidance to the infrastructure responsible for running the FRP system.

On the state side, this component is concerned with both accidental state
itself and accidental aspects of state. Firstly, it provides a means to specify
what state (of the accidental variety) should exist. Secondly it provides (if
desired) a means to specify what physical storage mechanisms should be used
for storing state (of both kinds) — i.e. the accidental aspects of storage.
This second aspect is the flexible mapping providing physical / logical data
independence as required by the relational model (section 8).

An example of the first kind of state-related hint might be a simple
directive that a particular derived-relvar should actually be stored (rather
than continually recalculated), so that it is always quickly available.

An example of the second kind of state-related hint might be that an
infrequently used subset of the attributes of a particular relvar (either de-
rived or base) should be stored separately for performance reasons. The use
of indices or other custom storage strategies would also be examples of this
second kind of state-related hint. The exact types of hint available here will
depend entirely on what is provided by the underlying infrastructure.

On the control side, recommendations for parallel evaluation of derived-
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relvars might be given. Also, declarative hints could be given about whether
the derived relvars should be computed eagerly (as soon as the essential state
changes), lazily (when the infrastructure is forced to provide them), or some
combination of different policies for different relvars.

All hints are incapable of referring to each other, but do refer to the
relevant (essential, base and derived) relvars by name.

9.1.4 Other (Interfacing)

The primary consideration not addressed by the above is that of interfacing
with the outside world.

Specifically, all input must be converted into relational assignments (which
replace the old relvar values in the essential state with new ones), and all
output (and side-effects) must be driven from changes to the values of relvars
(primarily derived relvars).

The exact nature of this task is likely to be highly application-dependent,
but we can say that there will probably be a requirement for a series of feeder
(or input) and observer (or output) components. These may well be defined,
at least partially, in a traditional, imperative way if custom interfacing is
required. There will be cases when it is necessary for a given interfacing
component to act in both capacities (if for example a message must be
observed and sent to another system, then a response received, recorded
and fed back in).

The expectation is that all of these components will be of a minimal
nature — performing only the necessary translations to and from relations.

Feeders

Feeders are components which convert input into relational assignments —
i.e. cause changes to the essential state. In order to be able to cause these
state changes, feeders will need to specify them in some form of state ma-
nipulation language provided by the infrastructure. At a minimum, this
language can consist of just a relational assignment command which assigns
to a relvar a whole new relation value in its entirety:

relvar := newRelationValue

The infrastructure which eventually runs the FRP system will ensure
that the command respects the integrity constraints23 — either by rejecting

23In fact one implication of this is that it is in fact necessary for the assignment command
to support multiple simultaneous assignment of several distinct relation values to several
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non-conformant commands, or possibly in some cases by modifying them to
ensure conformance.

Observers

Observers are components which generate output in response to changes
which they observe in the values of the (derived) relvars. At a minimum,
observers will only need to specify the name of the relvar which they wish
to observe. The infrastructure which runs the system will ensure that the
observer is invoked (with the new relation value) whenever it changes. In
this way observers act both as what are sometimes called live-queries and
also as triggers.

Despite this the intention is not for observers to be used as a substitute
for true integrity constraints. Specifically, hybrid feeders / observers should
not act as triggers which directly update the essential state (this would
by definition be creating derived and hence accidental state). The only
(occasional) exceptions to this should be of the ease of expression kind
discussed in sections 7.2.2 and 7.3.1.

Summary

The most complicated scenario when interfacing the core relational system
with the outside world is likely to come when the interfacing requires highly
structured input or output (this is most likely to occur when interfacing
with other systems rather than with people).

In this situation, the feeders or observers are forced to convert between
structured data and flat relations24.

9.1.5 Infrastructure

In several places above we have referred to the “infrastructure which runs
the FRP system”. The FRP system is the specification — comprising of the
four components above, the infrastructure is what is needed to execute this
specification (by interpretation, compilation or some mixture).

distinct relvars — this is to avoid temporary inconsistencies which could otherwise occur
with integrity constraints that involved multiple relvars.

24Some systems — for example the Kleisli system used in bio-informatics [Won00] —
seek to avoid this conversion by providing support for more complex structures such as
nested relations. We believe that the simplicity gained from having flat relations through-
out the system is worth the effort sometimes involved at the system edges (section 9.2.4
describes some of the rationale behind this).
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The different components of an FRP system lead to different require-
ments on the infrastructure which is going to support them.

Infrastructure for Essential State

1. some means of storing and retrieving data in the form of relations
assigned to named relvars

2. a state manipulation language which allows the stored relvars to be
updated (within the bounds of the integrity constraints)

3. optionally (depending on the exact range of FRP systems which the
infrastructure is intended to support) secondary (e.g. disk-based) stor-
age in addition to the primary (in memory) storage

4. a base set of generally useful types (typically integer, boolean, string,
date etc)

Infrastructure for Essential Logic

1. a means to evaluate relational expressions

2. a base set of generally useful functions (for things such as basic arith-
metic etc)

3. a language to allow specification (and evaluation) of the user-defined
functions in the FRP system. (It does not have to be a functional
language, but the infrastructure must only allow it to be used in a
functional way)

4. optionally a means of type inference (this will also require a mechanism
for declaring the types of the user-defined functions in the FRP system)

5. a means to express and enforce integrity constraints

Infrastructure for Accidental State and Control

1. a means to specify which derived relvars should actually be stored,
along with the ability to store such relvars and ensure that the stored
values are accurately up-to-date at all times

2. a flexible means to specify physical storage mechanisms to be used by
a relvar. This is a vital part of the infrastructure — without it the
infrastructure must store relvars in a way which closely mirrors their
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logical (essential) definitions, and that inevitably leads to accidental
(performance) concerns corrupting the essential parts of the system.
Specifically, procedures such as normalization or “de-normalization”
at the logical (essential) level should have no intrinsic performance
implications because of the presence of this mechanism.

Infrastructure for Feeders and Observers

The minimum requirement on the infrastructure (specifically on the state
manipulation language) from feeders is for it to be able to process relational
assignment commands (containing complete new relation values) and reject
them if necessary. Practical extensions that could be useful include the
ability to accept commands which specify new relvar values in terms of their
previous values — typically in the form of INSERT / UPDATE / DELETE
commands.

The minimum requirement on the infrastructure from observers is for it
to be able to supply the new value of a relvar whenever it changes. Practi-
cal extensions that could be useful are the ability to provide deltas, throt-
tling and coalescing capabilities (if the observers are viewed as live query-
handlers, then these extensions represent potential query meta-data).

Another possible extension is the ability to observe general relational
expressions rather than just relvars from the essential logic (this is not a
significant extension as it is basically equivalent to a short-term addition to
the essential logic’s set of derived relvars — the only difference being that
the expression in question would be anonymous).

Finally, the ability to access arbitrary historical relvar values would ob-
viously be a useful extension in some scenarios.

Summary

If a system is to be based upon the FRP architecture it will be necessary
either to obtain an FRP infrastructure from a third party, or to develop one
with existing tools and techniques.

Currently of course no real FRP infrastructures exist and so at present
the choice is clear. However, even in the presence of third party infrastruc-
tures there may in fact be compelling reasons for large systems to adopt the
custom route. Firstly, the effort involved in doing so need not be huge25, and

25A prototype implementation of the essential state and essential logic infrastructure —
the most significant parts — was developed in a mere 1500 lines of Scheme. In fact this
prototype supported not only the relational algebra but also some temporal extensions.
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secondly the custom approach leads to the ability to tailor the hints avail-
able (for use in the accidental state and control component) to the exact
requirements of the application domain.

Finally, it is of course perfectly possible to develop an FRP infrastructure
in any general purpose language — be it object-oriented, functional or logic.

9.2 Benefits of this approach

FRP follows the guidelines of avoid and separate as recommended in sec-
tion 7 and hence gains all the benefits which derive from that. We now
examine how FRP helps to avoid complexity from the common causes.

9.2.1 Benefits for State

The architecture is explicitly designed to avoid useless accidental state, and
to avoid even the possibility of an FRP system ever getting into a “bad
state”.

Specifically derived state is not normally stored (is not treated as essen-
tial state). In normal circumstances26 hybrid feeders/observers never feed
back in the exact same data which they observed — they only ever feed in
some externally generated input or response. So long as this principle is
observed errors in the logic of the system can never cause it to get into a
“bad state” — the only thing required to fix such errors27 is to correct the
logic, there is no need to perform an exhaustive search through and correc-
tion of the essential state. This also means that (aside from errors in the
infrastructure) the system can never require “restarting” / “rebooting” etc.

When it comes to separation, the architecture clearly exhibits both the
logic / state split and the accidental / essential split recommended in sec-
tion 7. An example of what this means is that you do not have to think
about any accidental state when concentrating on the logic of your system.
In fact, you do not really have to think about the essential state as being
state either — from the point of view of the logic, the essential state is seen
as constant.

Furthermore, the functional component (of the logic) has no access to
any state at all (even the essential state) — it is totally referentially trans-

The effort involved in this is insignificant when compared to the hundreds of man-years
often involved in large systems.

26The exception might be in the kind of highly interactive scenario considered in sec-
tions 7.2.2 and 7.3.1

27We’re talking here solely about fixing the system itself — of course FRP can’t guar-
antee that errors in the logic won’t escape and affect the real world via observers!
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parent, can only access what is supplied in the function arguments, and
hence offers hugely better prospects for testing (as mentioned earlier in sec-
tion 4.1.1).

Additionally, there are major advantages gained from adopting a re-
lational representation of data — specifically, there is no introduction of
subjective bias into the data, no concern with data access paths. This is in
contrast with approaches such as OOP or XML (as we saw in section 8.1.2).

Finally, integrity constraints provide big benefits for maintaining consis-
tency of state in a declarative manner:

The fact that we can impose the integrity constraints of our sys-
tem in a purely declarative manner (without requiring triggers
or worse, methods / procedures) is one of the key benefits of the
FRP approach. It means that the addition of new constraints
increases the complexity of the system only linearly because the
constraints do not — indeed cannot — interact in any way at
all. (Constraints can make use of user-defined functions — but
they have no way of referring to other constraints). This is in
stark contrast with more imperative approaches such as object
oriented programming where interaction between methods causes
the complexity to grow at a far greater rate.

Furthermore, the declarative nature of the integrity constraints opens
the door to the possibility of a suitably sophisticated infrastructure making
use of them for performance reasons (to give a trivial example, there is no
need to compute the relational intersection of two relvars at all if it can be
established that their integrity constraints are mutually exclusive — because
then the result is guaranteed to be empty). This type of optimisation is just
not possible if the integrity is maintained in an imperative way.

9.2.2 Benefits for Control

Control is avoided completely in the relational component which constitutes
the top level of the essential logic. In FRP this logic consists simply of a set
of equations (equating derived relvars with the relations calculated by their
expressions) which have no intrinsic ordering or control flow at all.

FRP also avoids any explicit parallelism in the essential components but
provides for the possibility of separated accidental control should that be
required.

An infrastructure which supports FRP may well make use of implicit
parallelism to improve its performance — but this shouldn’t be the concern
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of anyone other than the implementor of the infrastructure — certainly it is
not the concern of someone developing an FRP system.

A final advantage (which isn’t particularly related to control) is that the
uniform nature of the representation of data as relations makes it much easier
to create distributed implementations of an FRP infrastructure should that
be required (e.g. there are no pointers or other access paths to maintain).

9.2.3 Benefits for Code Volume

FRP addresses this in two ways. The first is that a sharp focus on true
essentials and avoiding useless accidental complexity inevitably leads to less
code.

The second way is that the FRP approach reduces the harm that large
volumes of code cause through its use of separation (see section 4.3).

9.2.4 Benefits for Data Abstraction

Data Abstraction is something which we have only mentioned in passing (in
section 4.4) so far. By data abstraction we basically mean the creation of
compound data types and the use of the corresponding compound values
(whose internal contents are hidden).

We believe that in many cases, un-needed data abstraction actually rep-
resents another common (and serious) cause of complexity. This is for two
reasons:

Subjectivity Firstly the grouping of data items together into larger com-
pound data abstractions is an inherently subjective business (Ungar
and Smith discuss this problem in the context of Self in [SU96]).
Groupings which make sense for one purpose will inevitably differ from
those most natural for other uses, yet the presence of pre-existing data
abstractions all too easily leads to inappropriate reuse.

Data Hiding Secondly, large and heavily structured data abstractions can
seriously erode the benefits of referential transparency (section 5.2.1)
in exactly the manner of the extreme example discussed in section 5.2.3.
This problem occurs both because data abstractions will often cause
un-needed, irrelevant data to be supplied to a function, and because
the data which does get used (and hence influences the result of a
function) is hidden at the function call site. This hidden and excessive
data leads to problems for testing as well as informal reasoning in ways
very similar to state (see section 4.1).
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One of the primary strengths of the relational model (inherited by FRP)
is that it involves only minimal commitment to any subjective groupings
(basically just the structure chosen for the base relations), and this commit-
ment has only minimal impact on the rest of the system. Derived relvars
offer a straightforward way for different (application-specific) groupings to
be used alongside the base groupings. The benefits in terms of subjectivity
are closely related to the benefits of access path independence (section 8.1.2).

FRP also offers benefits in the area of data hiding, simply by discouraging
it. Specifically, FRP offers no support for nested relations or for creating
product types (as we shall see in section 9.3).

9.2.5 Other Benefits

The previous sections considered the benefits offered by FRP for minimiz-
ing complexity. Other potential benefits include performance (as mentioned
briefly under section 9.2.1) and the possibility that development teams them-
selves could be organised around the different components — for example
one team could focus on the accidental aspects of the system, one on the
essential aspects, one on the interfacing, and another on providing the in-
frastructure.

9.3 Types

A final comment is that — in addition to a fairly typical set of standard
types — FRP provides a limited ability to define new user types for use in
the essential state and essential logic components.

Specifically it permits the creation of disjoint union types (sometimes
known as “enumeration” types) but does not permit the creation of new
product types (types with multiple subsidiary components). This is because
(as mentioned above) we have a strong desire to avoid any unnecessary data
abstraction.

Finally, it probably makes sense for infrastructures to provide type in-
ference for the essential logic. Interesting work in this area has been carried
out in the Machiavelli system [OB88].

10 Example of an FRP system

We now examine a simple example FRP system. The system is designed
to support an estate agency (real estate) business. It will keep track of
properties which are being sold, offers which are made on the properties,
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decisions made on the offers by the owners, and commission fees earnt by
the individual agency employees from their successful sales. The example
should serve to highlight the declarative nature of the components of an
FRP system.

To keep things simple, this system operates under some restrictions:

1. Sales only — no rentals / lettings

2. People only have one home, and the owners reside at the property they
are selling

3. Rooms are perfectly rectangular

4. Offer acceptance is binding (ie an accepted offer constitutes a sale)

The example will use syntax from a hypothetical FRP infrastructure
(which supports not only the relational algebra but also some of the common
extensions from section 8.5) — typewriter font is used for this.

10.1 User-defined Types

The example system makes use of a small number of custom types (see
section 9.3), some of which are just aliases for types provided by the infras-
tructure:

def alias address : string
def alias agent : string
def alias name : string
def alias price : double
def enum roomType : KITCHEN | BATHROOM | LIVING_ROOM
def enum priceBand : LOW | MED | HIGH | PREMIUM
def enum areaCode : CITY | SUBURBAN | RURAL
def enum speedBand : VERY_FAST | FAST | MEDIUM | SLOW |
VERY_SLOW

10.2 Essential State

The essential state (see section 9.1.1) consists of the definitions of the types
of the base relvars (the types of the attributes are shown in italics).

def relvar Property :: {address:address price:price
photo:filename agent:agent dateRegistered:date }
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def relvar Offer :: {address:address offerPrice:price
offerDate:date bidderName:name bidderAddress:address }

def relvar Decision :: {address:address offerDate:date
bidderName:name bidderAddress:address decisionDate:date
accepted:bool }

def relvar Room :: {address:address roomName:string
width:double breadth:double type:roomType }

def relvar Floor :: {address:address roomName:string
floor:int }

def relvar Commission :: {priceBand:priceBand
areaCode:areaCode saleSpeed:speedBand commission:double }

The example makes use of six base relations, most of which are self-
explanatory.

The Property relation stores all properties sold or for-sale. As will be
seen in section 10.3.3, properties are uniquely identified by their address.
The price is the desired sale price, the agent is the agency employee respon-
sible for selling the Property, and the dateRegistered is the date that the
Property was registred for sale with the agency.

The Offer relation records the history of all offers ever made. The ad-
dress represents the Property on which the Offer is being made (by the
bidderName who lives at bidderAddress). The offerDate attribute records
the date when the offer was made, and the offerPrice records the price of-
fered. Offers are uniquely identified by an (address, offerDate, bidderName,
bidderAddress) combination.

The Decision relation records the decisions made by the owner on the
Offers that have been made. The Offer in question is identified by the
(address, offerDate, bidderName, bidderAddress) attributes, and the date
and outcome of the decision are recorded by (decisionDate and accepted).

The Room relation records information (width, breadth, type) about the
rooms that exist at each Property. The Property is of course represented
by the address. One point worthy of note (because it’s slightly artificial) is
that an assumption is made that every Room in each Property has a unique
(within the scope of that Property) roomName. This is necessary because
many properties may have more than one room of a given type (and size).

The Floor relation records which floor each Room (roomName, address)
is on.
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Finally, the Commission relation stores commission fees that can be
earned by the agency employees. The commission fees are assigned on the
basis of sale prices divided into different priceBands, Property addresses
categorized into areaCodes and ratings of the saleSpeed. (The decision has
been made to represent commission rates as a base relation — rather than
as a function — so that the commission fees can be queried and easily
adjusted).

10.3 Essential Logic

This is the heart of the system (see section 9.1.2) and corresponds to the
“business logic”.

10.3.1 Functions

We do not give the actual function definitions here, we just describe their
operation informally. In reality we would supply the function definitions in
terms of some language provided by the infrastructure.

priceBandForPrice Converts a price into a priceBand (which will be used
in the commission calculations)

areaCodeForAddress Converts an address into an areaCode

datesToSpeedBand Converts a pair of dates into a speedBand (reflecting
the speed of sale after taking into account the time of year)

10.3.2 Derived Relations

There are thirteen derived relations in the system. These can be very loosely
classified as internal or external according to whether their main purpose is
simply to facilitate the definition of other derived relations (and constraints)
or to provide information to the users. We consider the definition and pur-
pose of each in turn.

As an aid to understanding, the types of the derived relations are shown
in comments (delimited by /* and */). In reality these types would be de-
rived (or checked) by an infrastructure-provided type inference mechanism.

Internal

The ten internal derived relations exist mainly to help with the later defi-
nition of the three external ones.
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/* RoomInfo :: {address:address roomName:string width:double
breadth:double type:roomType roomSize:double} */

RoomInfo = extend(Room, (roomSize = width*breadth))

The RoomInfo derived relation simply extends the Room base relation
with an extra attribute roomSize which gives the area of each room.

/* Acceptance :: {address:address offerDate:date bidderName:name
bidderAddress:address decisionDate:date} */

Acceptance = project_away(restrict(Decision | accepted == true),
accepted)

The Acceptance derived relation simply selects the positive entries from
the Decision base relation, and then strips away the accepted attribute (the
project_away operation is the dual of the project operation — it removes
the listed attributes rather than keeping them).

/* Rejection :: {address:address offerDate:date bidderName:name
bidderAddress:address decisionDate:date} */

Rejection = project_away(restrict(Decision | accepted == false),
accepted)

The Rejection derived relation simply selects the negative decisions and
removes the accepted attribute.

/* PropertyInfo :: {address:address price:price photo:filename
agent:agent dateRegistered:date
priceBand:priceBand areaCode:areaCode
numberOfRooms:int squareFeet:double} */

PropertyInfo =
extend(Property,

(priceBand = priceBandForPrice(price)),
(areaCode = areaCodeForAddress(address)),
(numberOfRooms = count(restrict(RoomInfo |

address == address))),
(squareFeet = sum(roomSize, restrict(RoomInfo |

address == address))))

The PropertyInfo derived relation extends the Property base relation
with four new attributes. The first — called priceBand — indicates which
of the estate agency’s price bands the property is in. The price band of the
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final sale price will affect the commission derived by the agent for selling the
property. The areaCode attribute indicates the area code, which also affects
the commission an agent may earn. The numberOfRooms is calculated by
counting the number of rooms (actually the number of entries in the Room-
Info derived relation at the corresponding address), and the squareFeet is
computed by summing up the relevant roomSizes.

/* CurrentOffer :: {address:address offerPrice:price
offerDate:date bidderName:name
bidderAddress:address} */

CurrentOffer =
summarize(Offer,

project(Offer, address bidderName bidderAddress),
quota(offerDate,1))

The purpose of the CurrentOffer derived relation is to filter out old offers
which have been superceded by newer ones (e.g. if the bidder has submitted
a revised — higher or lower — offer, then we are no longer interested in
older offers they may have made on the same property).

The definition summarizes the Offer base relation, taking the most recent
(ie the single greatest offerDate) offer made by each bidder on a property
(ie per unique address, bidderName, bidderAddress combination). Because
both bidderName and bidderAddress are included, the system supports the
(admittedly unusual) possibility of different people living in the same place
(bidderAddress) submitting different offers on the same property (address).

/* RawSales :: {address:address offerPrice:price
decisionDate:date agent:agent
dateRegistered:date} */

RawSales =
project_away(join(Acceptance,

join(CurrentOffer,
project(Property, address agent

dateRegistered))),
offerDate bidderName bidderAddress)

For the purposes of this example, sales are seen as corresponding di-
rectly to accepted offers. As a result the definition of the RawSales relation
is in terms of the Acceptance relation. These accepted offers are augmented
(joined) with the CurrentOffer information (which includes the agreed of-
ferPrice) and with information (agent, dateRegistered) from the Property
relation.
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/* SoldProperty :: {address:address} */
SoldProperty = project(RawSales, address)

The SoldProperty relation simply contains the address of all Properties
on which a sale has been agreed (ie the properties in the RawSales relation).

/* UnsoldProperty :: {address:address} */
UnsoldProperty = minus(project(Property, address), SoldProperty)

The UnsoldProperty is obviously just the Property which is not Sold-
Property (i.e. all Property addresses minus the SoldProperty addresses).

/* SalesInfo :: {address:address agent:agent areaCode:areaCode
saleSpeed:speedBand priceBand:priceBand} */

SalesInfo =
project(extend(RawSales,

(areaCode = areaCodeForAddress(address)),
(saleSpeed = datesToSpeedBand(dateRegistered,

decisionDate)),
(priceBand = priceBandForPrice(offerPrice))),

address agent areaCode saleSpeed priceBand)

The SalesInfo relation is based on the RawSales relation, but extends
it with areaCode, saleSpeed and priceBand information by calling the three
relevant functions.

/* SalesCommissions :: {address:address agent:agent
commission:double} */

SalesCommissions =
project(join(SalesInfo, Commission),

address agent commission)

The SalesCommissions which are due to the agents are derived simply by
joining together the SalesInfo with the Commission base relation. This gives
the amount of commission due to each agent on each Property (represented
by address).

External

Having now defined all the internal derived relations, we are now in a posi-
tion to define the external derived relations — these are the ones which will
be of most direct interest to the users of the system.
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/* OpenOffers :: {address:address offerPrice:price
offerDate:date bidderName:name
bidderAddress:address} */

OpenOffers =
join(CurrentOffer,

minus(project_away(CurrentOffer, offerPrice),
project_away(Decision, accepted decisionDate)))

The OpenOffers relation gives details of the CurrentOffers on which the
owner has not yet made a Decision. This is calculated by joining the Cur-
rentOffer information (which includes offerPrice) with those CurrentOffers
(excluding the price information) that do not have corresponding Decisions.
project_away is used here because minus requires its arguments to be of
the same type.

/* PropertyForWebSite :: {address:address price:price
photo:filename numberOfRooms:int
squareFeet:double} */

PropertyForWebSite = project( join(UnsoldProperty, PropertyInfo),
address price photo
numberOfRooms squareFeet )

The business wants to display the information from PropertyInfo on their
external website. However, they only want to show unsold property (this
is achieved simply by a join), and they only want to show a subset of the
attributes (this is achieved with a project).

/* CommissionDue :: {agent:agent totalCommission:double} */
CommissionDue =
project(summarize(SalesCommissions,

project(SalesCommissions, agent),
totalCommission = sum(commission)),

agent totalCommission)

Finally, the total commission due to each agent is calculated by simply
summing up the commission attribute of the SalesCommissions relation on
a per agent basis to give the totalCommission attribute.

10.3.3 Integrity

Integrity constraints are given in the form of relational algebra or relational
calculus expressions. As already noted, our hypothetical FRP infrastructure
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provides common relational algebra extensions (see section 8.5). It also
provides special syntax for candidate and foreign key constraints. (This
syntax is effectively just a shorthand for the underlying algebra or calculus
expression).

We consider the standard (key) constraints first:

candidate key Property = (address)
candidate key Offer = (address, offerDate,

bidderName, bidderAddress)
candidate key Decision = (address, offerDate,

bidderName, bidderAddress)
candidate key Room = (address, roomName)
candidate key Floor = (address, roomName)
candidate key Commision = (priceBand, areaCode, saleSpeed)

foreign key Offer (address) in Property
foreign key Decision (address, offerDate,

bidderName, bidderAddress) in Offer
foreign key Room (address) in Property
foreign key Floor (address) in Property

There are also some slightly more interesting, domain-specific constraints.
The first insists that all properties must have at least one room:

count(restrict(PropertyInfo | numberOfRooms < 1)) == 0

The next ensures that people cannot submit bids on their own property
(owners are assumed to be residing at the property they are selling):

count(restrict(Offer | bidderAddress == address)) == 0

This constraint prohibits the submission of any Offers on a property
(address) after a sale has happened (i.e. after an Acceptance has occurred
for the address):

count(restrict(join(Offer,
project(Acceptance, address decisionDate))

| offerDate > decisionDate)) == 0

The next constraint ensures that there are never more than 50 properties
advertised on the website in the PREMIUM price band:
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count(restrict(extend(PropertyForWebSite,
(priceBand = priceBandForPrice(price)))

| priceBand == PREMIUM)) < 50

This is an interesting constraint because it depends (directly as it hap-
pens) on a user-defined function (priceBandForPrice). One implication of
this is that changes to function definitions (as well as changes to essential
state) could — if unchecked — cause the system to violate its constraints.
No FRP infrastructure can allow this.

Fortunately there are two straightforward approaches to solving this.
The first is that the infrastructure could treat function definitions as data
(essential state) and apply the same kind of modification checks. The alter-
native is that it could refuse to run a system with a new function version
which causes existing data to be considered invalid. In this latter case man-
ual state changes would be required to restore integrity and to allow the
system became operational again.

Finally, no single bidder can submit more than 10 offers (over time) on
a single Property. This constraint works by first computing the number of
offers made by each bidder (bidderName, bidderAddress) on each Property
(address), and ensuring that this is never more than 10:

count(restrict(summarize(Offer,
project(Offer, address bidderName

bidderAddress),
numberOfOffers = count())

| numberOfOffers > 10)) == 0

Once the system is deployed, the FRP infrastructure will reject any state
modification attempts which would violate any of these integrity constraints.

10.4 Accidental State and Control

The accidental state and control component of an FRP system consists solely
of a set of declarations which represent performance hints for the infrastruc-
ture (see section 9.1.3). In this example the accidental state and control is
a set of three hint declarations.

declare store PropertyInfo

This declaration is simply a hint to the infrastructure to request that
the PropertyInfo derived relation is actually stored (ie cached) rather than
continually recalculated.
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declare store shared Room Floor

This hint instructs the infrastructure to denormalize the Room and Floor
relations into a single shared storage structure. (Note that because we are
able to express this as part of the accidental state and control we have not
been forced to compromise the essential parts of our system which still treat
Room and Floor separately).

declare store separate Property (photo)

This hint instructs the infrastructure to store the photo attribute of
the Property relation separately from its other attributes (because it is not
frequently used).

These three hints have all focused on state (PropertyInfo is accidental
state, and the other two declarations are concerned with accidental aspects
of state). Larger systems would probably also include accidental control
specifications for performance reasons.

10.5 Other

The feeders and observers for this system would be fairly simple — feeding
user input into Decisions, Offers etc., and directly observing and displaying
the various derived relations as output (e.g. OpenOffers, PropertyForWeb-
Site and CommisionDue).

Because of this it is reasonable to expect that the feeders and observers
would require no custom coding at all, but could instead be specified in a
completely declarative fashion.

One extension which might require a custom observer would be a re-
quirement to connect CommissionDue into an external payroll system.

11 Related Work

FRP draws some influence from the ideas of [DD00]. In contrast with
this work however, FRP is aimed at general purpose, large-scale applica-
tion programming. Additionally FRP focuses on a separate, functional,
sub-language and has different ideas about the use of types. Finally the ac-
cidental component of FRP has a broader range than the physical / logical
mapping of traditional DBMSs.

There are also some similarities to Backus’ Applicative State Transition
systems [Bac78], and to the Aldat project at McGill [Mer85] which investi-
gated general purpose applications of relational algebra.
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12 Conclusions

We have argued that complexity causes more problems in large software
systems than anything else. We have also argued that it can be tamed
— but only through a concerted effort to avoid it where possible, and to
separate it where not. Specifically we have argued that a system can usefully
be separated into three main parts: the essential state, the essential logic,
and the accidental state and control.

We believe that taking these principles and applying them to the top
level of a system design — effectively using different specialised languages
for the different components — can offer more in terms simplicity than can
the unstructured adoption of any single general language (be it imperative,
logic or functional). In making this argument we briefly surveyed each of the
common programming paradigms, paying some attention to the weaknesses
of object-orientation as a particular example of an imperative approach.

In cases (such as existing large systems) where this separation cannot be
directly applied we believe the focus should be on avoiding state, avoiding
explicit control where possible, and striving at all costs to get rid of code.

So, what is the way out of the tar pit? What is the silver bullet? . . . it
may not be FRP, but we believe there can be no doubt that it is simplicity.
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